
Pointers in C
Programming

A Modern Approach to Memory
Management, Recursive Data Structures,
Strings, and Arrays
—
Thomas Mailund

Pointers in C
Programming

A Modern Approach to Memory
Management, Recursive Data

Structures, Strings, and Arrays

Thomas Mailund

Pointers in C Programming: A Modern Approach to Memory Management, Recursive
Data Structures, Strings, and Arrays

ISBN-13 (pbk): 978-1-4842-6926-8			 ISBN-13 (electronic): 978-1-4842-6927-5
https://doi.org/10.1007/978-1-4842-6927-5

Copyright © 2021 by Thomas Mailund

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image by Engin Akyurt on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484269268. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Thomas Mailund
Aarhus N, Denmark

https://doi.org/10.1007/978-1-4842-6927-5

iii

Table of Contents

Chapter 1: ��Introduction��� 1

Chapter 2: ��Memory, Objects, and Addresses��� 3

The Memory of a Generic Process��� 6

Objects, Sizes, and Addresses��� 9

Memory Allocation��� 13

Alignment��� 19

Call Stacks and the Lifetime of Local Variables��� 28

Chapter 3: ��Pointers�� 33

Call by Reference��� 36

NULL Pointers�� 49

Const and Pointers��� 53

Restricted Pointers��� 66

Chapter 4: ��Pointers and Types��� 69

Pointers, Types, and Data Interpretation�� 70

Casting Between Pointers of Different Types��� 79

Void Pointers��� 79

Qualified Types��� 80

Unions��� 80

Struct Pointers�� 81

About the Author�� ix

About the Technical Reviewer�� xi

Acknowledgments�� xiii

iv

Character Pointers�� 81

Arbitrary Types�� 82

Void Pointers�� 85

Chapter 5: ��Arrays��� 91

Arrays, Indices, and Pointer Arithmetic�� 94

Out-of-Bounds Errors��� 100

Pointers to Arrays��� 101

Arrays and Function Arguments��� 102

Multidimensional Arrays�� 106

Chapter 6: ��Working with Arrays�� 123

Sieve of Eratosthenes�� 128

Array Solution��� 128

Pointer Solution�� 130

Radix Sorting�� 135

Generic Functions on Arrays�� 147

Chapter 7: ��Strings�� 157

Strings as Sequences of Bytes�� 158

Integers to Strings��� 165

Run-Length Encoding��� 174

Finding Words�� 177

Compacting Words��� 186

Buffer Overflow Errors��� 190

Chapter 8: ��Substrings Through Ranges��� 195

Basic Operations�� 200

Revisiting Word Iterators�� 206

Replacing Strings��� 213

Table of Contents

v

Chapter 9: ��Dynamic Memory Management��� 219

Functions for Dynamic Memory Allocation�� 220

malloc()��� 220

calloc()��� 223

realloc()��� 225

aligned_alloc()�� 228

free()��� 229

String Operations��� 230

Dynamic Arrays�� 239

Gapped Buffers�� 250

Chapter 10: ��Generic Dynamic Arrays��� 259

Void Pointers�� 260

Generic Memory Buffer�� 265

Code Generating Macros�� 270

Inlining Macros�� 275

Heap-Allocated Inlined Array��� 286

Chapter 11: ��Linked Lists�� 305

Singly Linked Lists��� 307

Adding a Level of Indirection��� 321

Adding a Dummy Element�� 329

Doubly Linked Lists�� 334

Link Operations�� 338

List Operations��� 345

Sorting Doubly Linked Lists��� 358

Selection Sort��� 359

Insertion Sort�� 362

Merge Sort�� 364

Quicksort�� 367

Table of Contents

vi

Chapter 12: ��Search Trees��� 371

Tree Operations�� 372

Contains�� 372

Insert�� 373

Delete��� 373

Free�� 375

Recursive Data Structures and Recursive Functions��� 375

Direct Implementation��� 377

Pass by Reference��� 383

Refactoring�� 389

Iterative Functions�� 390

Explicit Stacks�� 392

Morris Traversal��� 399

Freeing Nodes Without Recursion and Memory Allocation��� 403

Adding a Parent Pointer��� 404

Chapter 13: ��Function Pointers��� 411

Function Pointers for High-Order Functions�� 413

Callbacks��� 416

Generic String Iterator�� 418

Function Pointers for Abstract Data Structures��� 421

Function Pointers for Polymorphic Data Structures��� 428

Single Inheritance Objects and Classes��� 429

A Hierarchy of Expression Classes��� 431

Generating Functions��� 440

Tagged Pointers�� 444

Chapter 14: ��Generic Lists and Trees�� 449

Generic Lists�� 450

Casting to Links�� 456

Using Offsets�� 459

Generic Search Trees��� 463

Table of Contents

vii

Chapter 15: ��Reference Counting Garbage Collection��� 477

Immutable Links with Reference Counting�� 480

Adding a Compiler Extension (Not Portable!)�� 492

A Generic Reference Counter��� 495

Search Trees with Reference Counting�� 500

Circular Structures?��� 507

Chapter 16: ��Allocation Pools��� 509

A Simple Pool for Tree Nodes��� 510

Adding Resizing��� 511

Adding Deallocation��� 514

A Generic Pool�� 517

Chapter 17: ��Conclusions�� 525

Index�� 527

Table of Contents

ix

About the Author

Thomas Mailund is an associate professor in bioinformatics at Aarhus University,

Denmark. He has a background in math and computer science. For the past decade,

his main focus has been on genetics and evolutionary studies, particularly comparative

genomics, speciation, and gene flow between emerging species. He has published

String Algorithms in C, R Data Science Quick Reference, The Joys of Hashing, Domain-

Specific Languages in R, Beginning Data Science in R, Functional Programming in R, and

Metaprogramming in R, all from Apress, as well as other books.

xi

About the Technical Reviewer

Juturi Narsimha Rao has 9 years of experience as a software developer, lead engineer,

project engineer, and individual contributor. His current focus is on advanced supply

chain planning between the manufacturing industries and vendors.

xiii

Acknowledgments

I am grateful to Helge Jensen, Anders E. Halager, Irfansha Shaik, and Kristian Ozol for

discussions and comments on earlier drafts of this book.

1
© Thomas Mailund 2021
T. Mailund, Pointers in C Programming, https://doi.org/10.1007/978-1-4842-6927-5_1

CHAPTER 1

Introduction
Pointers and memory management are considered among the most challenging issues

to deal with in low-level programming languages such as C. It is not that pointers are

conceptually difficult to understand, nor is it difficult to comprehend how we can obtain

memory from the operating system and how we return the memory again so it can be

reused. The difficulty stems from the flexibility with which pointers let us manipulate the

entire state of a running program. With pointers, every object anywhere in a program’s

memory is available to us—at least in principle. We can change any bit to our heart’s

desire. No data are safe from our pointers, not even the program that we run—a running

program is nothing but data in the computer’s memory, and in theory, we can modify

our own code as we run it.

With such a power tool, it should hardly surprise that mistakes can be fatal for a

program, and unfortunately, mistakes are easy to make when it comes to pointers. While

pointers do have type information, type safety is minimal when you use them. If you

point somewhere in memory and pronounce that you want “that integer over there,” you

get an integer, no matter what the object “over there” really is. Treat it like an integer,

and it behaves like an integer. Assign a value to it, and may the gods have mercy on your

soul if it was supposed to be something else and something you need later. You have just

destroyed the real object you pointed at.

If you are not careful, any small mistake can crash your program—or worse. If you

accidentally modify the incorrect data in your program, all your output is tainted. If you

are lucky, it is easily detectable, and you are in for a fun few days of debugging. If you

are less fortunate, you can make business decisions based on incorrect output for years

to come, never realizing that the code you wrote is fooling you every time it runs—or

maybe not every time, just on infrequent occasions, so rare that you can never chase

down the problem. When you have bugs caused by pointers (or uninitialized memory),

https://doi.org/10.1007/978-1-4842-6927-5_1#DOI

2

they are not always reproducible. Your program’s behavior might depend on which other

programs are running concurrently on the computer. If you start debugging it, any code

you add to the program to examine it will affect its behavior. Loading the program into a

debugger will definitely change the behavior as well. I hope that you will never run into

such bugs—known as Heisenbugs after Heisenberg’s uncertainty principle—but if you

mess around with pointers long enough, you likely will.

It sounds like pointers are something we should stay away from, and many high-level

programming languages do try to avoid them. Instead, they provide alternative language

constructions that are safer to use but provide much of the same functionality that we

need pointers for in C. They are not as powerful but alleviate many of the dangers that

raw memory pointers pose. In low-level languages such as C, we are programming much

closer to the machine. The computer doesn’t understand high-level constructions; it

understands memory and chunks of bits, and in low-level languages, we can manipulate

the computer at this fundamental level. We very rarely need to, nor do we want to, but

when we choose to program in low-level languages, it is to get close to the machine,

where we can write more efficient programs, measured in both speed and memory

usage. And at this level, we get pointers—more efficient, more fundamental, and more

dangerous. If, however, we approach using pointers in a structured manner, we can

achieve the safety of high-level languages and the efficiency of low-level languages. The

burden is on the programmer, rather than the language designer, but we can get the best

of both worlds for anything that you can do in a high-level language—while maintaining

the real power of pointers in the rare cases where you need more.

In this book, I will explain the basic memory model that C programs assume about

the computer they run on and how pointers let us access data anywhere in memory. I will

explain how you get safe access to memory, by allocating blocks of memory you need, so

they are yours to manipulate, and how you can release memory when you no longer need

it, so you do not run out of memory before your computations are done. I will explain how

pointers are essential for building complex data structures and how you can approach this

in a structured way, so they are safe to use. And I will show you how you can use pointers to

functions to implement higher-order functions and polymorphic data structures.

I will not cover basic C programming. This is not an introduction to programming or

the language. I will assume that you already know the basics and will jump directly into

memory and pointers. I will not cover issues related to concurrency and interruptions

and such either. That would lengthen the book substantially, and there are already

excellent books where you can explore this further.

Chapter 1 Introduction

3
© Thomas Mailund 2021
T. Mailund, Pointers in C Programming, https://doi.org/10.1007/978-1-4842-6927-5_2

CHAPTER 2

Memory, Objects, and
Addresses
Everything you manipulate when you run a computer program, and the program itself,

has to reside somewhere in your computer’s memory—on a disk, in its RAM circuits,

in various levels of cache, or in a CPU’s or GPU’s registers. It is not something we

necessarily think about when we write programs, but it is an obvious truth: if objects

aren’t found somewhere, we cannot work with them. The reason we can get away with

not worrying about memory is that our programming language handles most of the

bookkeeping.

Consider the classical “Hello, world!” program:

#include <stdio.h>

int main(void)

{

 printf("Hello, world\n");

 return 0;

}

We don’t need to think about the computer’s memory when we write it (or execute

it). Still, many objects must necessarily be represented in memory before we can run

the program—the program itself, including the main() function we write ourselves

and the printf() function we get from the runtime system. The two arguments we

give to main(), argc and argv, are stored somewhere, as is the constant string "Hello,

world!\n".

https://doi.org/10.1007/978-1-4842-6927-5_2#DOI

4

Or consider a simple function for computing the factorial of a number:

int factorial(int n)

{

 if (n <= 1) return 1;

 else return n * factorial(n - 1);

}

When we call the function, we must store the argument, n, somewhere. In the

recursive case, we call the function again, and in the second call, we need another

parameter n. We need another one because we need to remember the current n so we

can multiply it to the result of the recursion. Each recursive call must have its own n

stored somewhere in memory.

We don’t have to worry about where the functions, variables, and constants live in

memory when we write this code because the C compiler will generate the necessary

machine code to handle it for us. It will allocate the space for constants and variables,

and it handles writing function parameters and assignments to variables into the correct

memory locations. When we read the value in a variable, it handles getting it from the

right memory location for us as well.

However, when we choose to program in a low-level language, like C, the raw

memory is never too far away. It is possible to hide memory entirely from the

programmer, to pretend that objects are floating around somewhere and never wonder

about where that is. However, it comes at a computational overhead, and it limits what

we can do with a program in some ways. Low-level languages do not do this. They let

us get the memory of objects and manipulate the memory directly. We do not do this

willy-nilly because if we did, we would write unmaintainable software. Still, we have the

power, and when we use this power carefully, and in a structured way, we can build the

features that high-level languages provide using a single mental framework and with

little computational overhead.

Chapter 2 Memory, Objects, and Addresses

5

Even though we work with low-level languages, we work with an abstraction of the

computer’s memory. A modern computer’s memory is an immensely complex system,

where data lives at different locations, and the time it takes to access it varies widely.

A simplified model of a modern computer can look like that in Figure 2-1.

Objects that reside in a CPU’s or GPU’s registers are incredibly fast to access and

manipulate. In comparison, accessing an object on a RAM chip takes geological ages. We

cannot hold all the data we operate on in registers, there are too few of them, so we need

to move data in and out of the CPU. To alleviate the long delay you get when the CPU has

to access objects, the computer moves data you are currently working on into a cache,

which the CPU can access faster than the main memory. When you switch to working

on some other data, that goes into the cache, and the previous data goes back to main

memory. When we need data from files, we usually write code that explicitly gets it from

there, but if the computer runs out of main memory, it might also use the file system to

swap data you are not using out of and data you are using into RAM.

Figure 2-1.  Computer memory hierarchy

Chapter 2 Memory, Objects, and Addresses

6

Your hardware, operating system, and compiler work together to optimize the

computational cost of memory access. Your compiler will analyze your programs and

put objects in registers when possible. The computer’s hardware will move objects from

RAM into different levels of cache for faster access. If you are so unlucky that data needs

to move to a disk, the operating system will handle that for you. We do not usually write

programs that work on memory at this level of detail. It would be incredibly tedious to

do, and we would write programs optimized for specific platforms. If you change the

hardware, you have different levels of cache, with different performance trade-offs.

Writing programs with an abstract memory model is hard enough; writing programs

with the full complexity in mind would be close to impossible. We write programs with a

simpler conceptual model of computer memory and let the compiler and hardware map

from the simple model to the more complex.

In this book, we will pretend that there is only one level of memory, RAM. All

data manipulation happens in the CPU, but the compiler will generate the necessary

code to move data in and out of the CPU. We will not worry about this, but trust that it

does this efficiently. An optimizing compiler is likely better at it than we are anyway,

and it certainly is more efficient to write code if we do not worry about such low-level

programming. So we will only worry about what our data is doing in that big block of

RAM. This is close to how C’s memory model work. If you write portable C, the language

standard does not make many promises about what the memory looks like. Still, all

objects sit in some memory, they have addresses that you can get, and if you have the

address of an object, then you can manipulate that object. What you can actually do with

the object depends on how you define it, but whatever you can do with an object, you

can also do through its address.

�The Memory of a Generic Process
The C standard doesn’t specify how memory should be organized for running programs,

but a typical process, that is, a running program, can look like Figure 2-2. At the lowest

memory addresses, at the bottom, you have the code that the process runs. Code is data

as well, it is the instructions that the CPU should follow, and it is part of the process’

memory. Above that, you have the data that exists throughout the process’ lifetime.

When you declare global variables, they live as long as the program runs, and this is

where they sit in memory. Some of this data will be read-only. There are constants

defined in a program that you cannot change. String literals, those you define with "...",

Chapter 2 Memory, Objects, and Addresses

7

are usually immutable, they live in read-only memory, and your program might crash if

you try to write to them. Global variables you define yourself, if not declared const, are

mutable, and you can write to them. In the figure, I do not make a distinction between

the two, but your data usually comes as both read-only and read-write.

On top of that, you have the memory that the program allocates (and deallocates)

while it runs. We call this memory area the heap, and in Chapter 9 we see how you can

allocate memory from it in C. When the process needs more memory, the heap grows

upward. When it gets rid of memory, the situation is more complicated. We do not

remove a block in the middle and move all the data above it down, that would be time-

consuming, and we cannot move objects we have the address of—then they would

have moved away, and so accessing the data through an address would not work. Not

to worry, though, it is something that C’s runtime system will handle for you. At the top,

we have the stack. The stack handles function calls, and it is where local variables and

function arguments live. It typically grows downward. Between the stack and the heap,

there is usually a barrier, a piece of memory that you are not allowed to access. It is there

to prevent the stack and heap to grow into each other.

The memory that a process sees is rarely the physical memory the computer has.

Between a running process and the physical memory, the CPU creates a “virtual”

memory. That is the memory space that the program works with, and each time it needs

to access memory, the hardware will map the virtual address to a physical one. In the

old days, physical and virtual memory was the same, and any program could read and

write data anywhere and execute any code from anywhere. This is, obviously, highly

unsafe. The virtual memory protects processes from each other and provides a more

straightforward address interface to programs.

Programs need to allocate memory for the stack and heap to use it, which typically

involves asking the operating system to get a chunk of memory, which in turn will set

up this virtual to physical mapping. That is the addresses that the program can freely

access. Even though you could, in theory, address the full address space, in practice, the

hardware will cause an interrupt if you access data outside of the memory the program

got allocated by the operating system. This will typically result in the OS terminating the

process. Thus, if you haven’t gotten permission to read or write from somewhere, and

you do it anyway, then it can be the death of your program.

Similarly, there is usually protection on which memory you can execute. You should

not execute random data, so you are prevented from that. And since there are obvious

security problems if you allow a program to write into its code, modifying it potentially

based on user input, the executable memory is often read-only.

Chapter 2 Memory, Objects, and Addresses

8

When you write a C program, you are not given any guarantees for how the data is

positioned in memory. You have the register keyword to tell the compiler that you

would like a given variable stored in a register, but this is an anachronism more than

anything else. It is only a suggestion to the compiler, and it is allowed to ignore it. Your

compiler is better at allocating registers than most programmers, and it will likely ignore

the keyword altogether. The only practical consequence of using it is that you are then

not allowed to take the address of the variable (that would be inconsistent with wanting

to keep it in a register). I suggest you never use this keyword. If you do not take the

address of a local variable, then the compiler will put it in a register if that makes the

most efficient code. Don’t interfere with its register allocation.

Figure 2-2.  A process’ memory layout

Chapter 2 Memory, Objects, and Addresses

9

You likely have access to the system calls that lets you manipulate memory at the low

levels described, but they are platform dependent, and code you write for one platform will

not work on another. The interface to memory that C provides handles the interaction with

the operating system, and if you want to write portable code, you should stick with that.

Unless you have particular needs, that interface will do everything you need.

In portable C, you cannot assume that your program will run with a memory layout

like that described earlier. C is designed to run on practically any hardware and any

operating system, and the C standard thus makes few assumptions about the underlying

platform. That being said, it is a useful mental model for thinking about your program’s

memory. You cannot assume that the stack lies at higher memory locations than the

heap or that it grows downward instead of upward (and I honestly don’t see when that

would be relevant for you to worry about).

Even if you write your code in machine code, with full power to access memory as

you please, you probably won’t see exactly this layout. Addresses are usually scrambled

by the architecture, as a defense against hacking attacks (it prevents an attacker from

knowing where your code and data are, by randomizing it). If you write multithreaded

programs, you need a stack per threat, and they can’t all lie at the top of the process’

address space. If you dynamically load libraries while executing your program, they need

to go somewhere as well. That is code, but the code’s location and size are already fixed

in this model.

Still, there is a stack, and there is a heap—if not in reality, then conceptually—and I

will present memory in this book as if we had processes like these. As long as you don’t

write your programs with this strong an assumption about the memory layout, it is a

useful mental model of the memory you use and manipulate.

�Objects, Sizes, and Addresses
While the C language doesn’t describe how memory is organized, it does specify that

each object has an address and a size. The address is where it sits, conceptually if not

in fact, and its size is how many memory locations it takes up. By the C standard, each

memory cell takes up one char, and larger objects take up more cells of memory. The C

standard doesn’t say what size a char actually is; it is just the minimum size of an object

that we can put into one block.

Chapter 2 Memory, Objects, and Addresses

10

You can get the size of an object using the sizeof operator. Try running this

program:

#include <stdio.h>

int main(void)

{

 char c;

 printf("%zu %zu\n", sizeof(char), sizeof c);

 int i;

 printf("%zu %zu\n", sizeof(int), sizeof i);

 double d;

 printf("%zu %zu\n", sizeof(double), sizeof d);

 return 0;

}

I got

1 1

4 4

8 8

but the result will depend on your platform.

When we use sizeof on a type or a variable, we get the size of the type/object. Your

result might vary from mine (I got size 1 for char, 4 for int, and 8 for double). The size of

char is always one. That is guaranteed by the C standard. There are no other guarantees

about the absolute size of other types, although there are some guarantees about the

relative size of objects. For practically all modern hardware, a char is 8 bits, but the

standard doesn’t guarantee it. The constant CHAR_BIT will tell you how many bits a char

contains in your own development environment, but I will be surprised if it isn’t 8. If it

isn’t, then you are working on unusual hardware. If a char is 1 byte, that means that for

my output, an integer is 32 bits (4 bytes) and a double is 64 bits (8 bytes).

All sizes are relative to the minimal size that C works with, and that is the size of a

char. For the variables, you do not need the parentheses. You can write sizeof c instead

of sizeof(c). For the types, you do need the parentheses. If you want the size of an

object or type related to a variable, that is, the variable itself or something it refers to in

cases of structures or arrays, you should prefer to get the size through the variable.

Chapter 2 Memory, Objects, and Addresses

11

You have specified the type when you declared the variable, and if you use the type once

more with sizeof, you have two references to it. If you change one and not the other, you

can get in trouble. It is better to specify the type once and get it automatically from the

variable after that.

If you want to know the address at which a variable sits, you can put an ampersand,

&, before the variable:

#include <stdio.h>

int main(void)

{

 char c = 1;

 printf("%d %p\n", c, (void *)&c);

 int i = 2;

 printf("%d %p\n", i, (void *)&i);

 double d = 3.0;

 printf("%f %p\n", d, (void *)&d);

 return 0;

}

The program prints the (integer) value of a character, the value of an integer, and

the value of a double, together with the memory addresses where the variables sit. The

formatting code %p gives us the text representation of the address when we call printf().

It will print the memory addresses. The (void *) cast is there because the %p wants a

void pointer. We see more to those in the next chapter.

There are no hard rules for where C should put variables, nor is there any rule that

says that you can meaningfully compare the address of objects you haven’t allocated

together. That being said, if you see that the printed addresses are numbers close

together, then the addresses probably are. If your memory addresses are laid out in the

process’ memory locations as described in the previous section, the preceding program

gives you where they sit. I got the result:

1 0x7ffee0d888ff

2 0x7ffee0d888f8

3.000000 0x7ffee0d888f0

Chapter 2 Memory, Objects, and Addresses

12

which tells us that the double was put first in memory, then the integer, and then the

character; see Figure 2-3. The memory locations are ordered from the bottom and up, so

the integer, for example, sits at address 0x7ffee0d888f8 (bottom) to 0x7ffee0d888b (top).

The 8 bytes from 0x7ffee0d88f0 contain the double. Immediately after the double,

we have the int. From the sizeof(int) call in the previous program, we know that an

int takes up four memory cells on my machine, but there is a gap, the gray area, up to

the char, found at address 0x7ffee0d888f0. C can put the variables where it wants, and

you have no guarantee that they are consecutive for two separate variables. This layout is

what I got on my computer when I translated the program with the compiler and options

that I used. If I change any of the options, for example, change the optimization settings,

things could look very different. Do not make assumptions about where individual

variables are put in memory; the C standard does not make any promises. It only

promises that your objects have an address and a size that is determined by its type.

Figure 2-3.  Memory locations for a char, int, and double

Chapter 2 Memory, Objects, and Addresses

13

More technically, a block of memory you have allocated in a single operation has an

address and a size. From the beginning of the allocated memory and up to its size, you

have consecutive addresses, and you can meaningfully compare these addresses and

reason about the memory layout. Memory that you have allocated independently, you

should not make any assumptions about. Maybe you can use their addresses to work

out where the memory sits relative to each other, or maybe you cannot. If you want to

compare addresses, stick to looking at addresses within one allocated block.

�Memory Allocation
What does it mean to allocate memory? How do we get the memory that our variables sit

in? And how do we get more when we need it? Most memory management is automatic

in C. When you declare a variable, the compiler generates code for allocating the

memory to hold it. For global and static variables, it sets aside memory that will last as

long as the program runs. For local variables and function arguments, which you can

think of as the same thing, the compiler generates code to get memory for them when

you call a function. This memory is allocated on the stack, and it only lives as long as the

function call that allocated it. We return to stack-allocated memory later in the chapter.

Although it is a good bet that local variables sit near each other on the stack, you

cannot make assumptions if you want your code to run everywhere. Individual variables

are independently allocated, and then the language makes no promises about how they

relate. But you can allocate more than one value at the same time, and then we get a few

more promises.

There are different ways that we can allocate multiple objects at the same time.

The simplest is through arrays that we will cover in detail in Chapters 5 and 6. An array

allocates several objects of the same type and put them, one after another, in consecutive

memory locations. In the following program, we allocate an array of five integers and get

the addresses of the individual integers:

#include <stdio.h>

int main(void)

{

 int array[5];

 printf(" array == %p\n", (void *)array);

 for (int i = 0; i < 5; i++) {

Chapter 2 Memory, Objects, and Addresses

14

 printf("&array[%d] == %p\n", i, (void *)&array[i]);

 }

 printf("sizeof array == %zu\n", sizeof array);

 printf("5 * sizeof(int) == %zu\n", 5 * sizeof(int));

 return 0;

}

An integer takes up sizeof(int) memory addresses, so five of them takes up 5 *

sizeof(int), and that is the size of the array. The integers lie in contiguous memory,

with array[i + 1] sizeof(int) after array[i]; see Figure 2-4. The value of an array,

the preceding array, is the address of the first of the integers.

The integers in the array are part of the same memory allocation, and you are

guaranteed that they are structured this way in memory.

With dynamic memory allocation, the topic for Chapter 9, you explicitly allocate

memory blocks of the desired size. There, as well, you have a block of memory where the

addresses are contiguous. You can use them more freely than you can with arrays, but in

practice, you use them either to store array-like data or to store structs and unions.

Chapter 2 Memory, Objects, and Addresses

15

With both struct and union, you have a single memory allocation when you declare

a variable, but a struct usually contains more than one data type, and so does a union

although its purpose is to store different types in the same memory location. When you

define a variable of a struct or union type, you are guaranteed to get a chunk of memory

of the relevant type’s size that you can index as consecutive memory addresses. For

unions, you get a block of memory that is large enough to hold the largest element, and

all the elements sit at the first address in the union.

Figure 2-4.  Memory layout of an array

Chapter 2 Memory, Objects, and Addresses

16

If you run this program

#include <stdio.h>

union data {

 char c;

 int i;

 double d;

};

#define MAX(a,b) (((a)>(b))?(a): (b))

#define MAX3(a,b,c) MAX((a),MAX((b), (c)))

int main(void)

{

 union data data;

 printf("sizeof data == %zu\n", sizeof data);

 printf("max size of components == %zu\n",

 MAX3(sizeof data.c, sizeof data.i, sizeof data.d));

 printf("data at %p\n", (void *)&data);

 printf("data.c at %p\n", (void *)&data.c);

 printf("data.i at %p\n", (void *)&data.i);

 printf("data.d at %p\n", (void *)&data.d);

 return 0;

}

you might get something like

sizeof data == 8

max size of components == 8

data at 0x7ffeebd2c900

data.c at 0x7ffeebd2c900

data.i at 0x7ffeebd2c900

data.d at 0x7ffeebd2c900

Chapter 2 Memory, Objects, and Addresses

17

A double is the largest of the three types (on my machine), and the union gets that

size—but see the next section for more details about union sizes. All the elements in the

union sit at the same address, the address of the union itself, but of course you cannot

use them all at the same time. That is not the purpose of unions. You can treat the

memory block that the union holds as all three of the types, but a union only holds one

of the types at any given time. Therefore, they can store their data in the same memory

block and at the same address.

For structures, you get the memory to hold all of the components at the same time,

so their size is at least enough to hold all of them. The elements come, one after another,

in the order you define them, and the first element is at the first address of the structure.

However, between the elements in the struct, there might be unused memory.

When I run this program

#include <stdio.h>

struct data {

 char c;

 int i;

 double d;

};

int main(void)

{

 struct data data;

 printf("sizeof data == %zu\n", sizeof data);

 printf("size of components == %zu\n",

 sizeof data.c + sizeof data.i + sizeof data.d);

 printf("data at %p\n", (void *)&data);

 printf("data.c at %p\n", (void *)&data.c);

 printf("data.i at %p\n", (void *)&data.i);

 printf("data.d at %p\n", (void *)&data.d);

 return 0;

}

Chapter 2 Memory, Objects, and Addresses

18

I get the output

sizeof data == 16
size of components == 13
data at 0x7ffeec6988f8
data.c at 0x7ffeec6988f8
data.i at 0x7ffeec6988fc
data.d at 0x7ffeec698900

So the struct variable data takes up 16 memory addresses, even though the data in it
only take up 13 bytes (or technically 13 sizeof(char)). The components come in order;
first we have c, then i, and then d with c at the same address as the struct, but there is
some padding between c and i; see Figure 2-5. If you rearrange the order of the elements,

you get them in a different order in memory, but there is likely always some padding.

Figure 2-5.  Memory layout of a struct

Chapter 2 Memory, Objects, and Addresses

19

The padding might not only be between the components of the struct. You are
guaranteed that the first address is where the first component sits, but there can be
padding after the last components. If I move c to the bottom of the struct

struct data {
 int i;
 double d;
 char c;
};

I get the output

sizeof data == 24
size of components == 13
data at 0x7ffeef73a8f0
data.c at 0x7ffeef73a900
data.i at 0x7ffeef73a8f0
data.d at 0x7ffeef73a8f8

shown in Figure 2-6. The structure is now 24 long, with a gap between i and d and a
segment of unused memory after c.

C does not give you many promises about how struct memory should look. The
first element at the first address, the elements in order, and that is it. Why does it add this
padding? It is not to be malicious. It has to do with memory alignment.

�Alignment
In the abstract memory model, an address is just an address, and we can put any object
there. An object takes up a certain amount of memory, say 4 bytes for a 32-bit integer, so
if we put an integer at address a, then that address and the following three bytes is where
the integer lives. However, on actual hardware, there is more structure to a computer’s
memory. The memory is not a sequence of bytes, but rather computer words of some
given size, for example, 64 bits. The bus that carries data from memory to the CPU
works with words of certain sizes. If you ask to get an integer from memory, and it sits
in a single word, the computer needs to fetch that single word. If you put an integer at a
location that spans more than one word, the computer has to fetch both words and then
do some bit manipulation to put it into a register. And even if you ask for a 32-bit integer
that sits inside a 64-bit integer, there might be more work for the computer to represent it

as an integer in the CPU, if it doesn’t sit at a certain offset in its word.

Chapter 2 Memory, Objects, and Addresses

20

When you put objects at memory locations that match what the hardware can

handle or simply finds convenient, we say that they are aligned, and memory alignment

can be critical. Typically, the hardware prefers that you put objects at addresses that are

a multiple of the size of the objects, so if you have 4-byte integers, your computer might

prefer that you put them on addresses that are multiples of four. On some hardware, you

Figure 2-6.  Structure memory layout after rearranging

Chapter 2 Memory, Objects, and Addresses

21

are not allowed to put objects at random addresses. You must align them correctly. On

other platforms, you can put objects anywhere, but you pay a runtime penalty if they are

not aligned. And then there is hardware that doesn’t care.

If your compiler is C11 standard compliant, you can use the alignof() macro to get

the alignment constraints of a type. It will tell you what an address must be a multiple of

to correctly align the type. You can try this:

#include <stdio.h>

#include <stdalign.h>

int main(void)

{

 printf("chars align at %zu and have size %zu.\n",

 alignof(char), sizeof(char));

 printf("ints align at %zu and have size %zu.\n",

 alignof(int), sizeof(int));

 printf("doubles align at %zu and have size %zu.\n",

 alignof(double), sizeof(double));

 return 0;

}

On my computer, it tells me that char can align anywhere (it has alignment 1). This

will always be the case and is a property of character types. My int objects align at

addresses that are multiples of four, and my double objects must sit at addresses that are

multiples of eight. Alignments are guaranteed to be integral powers of two, and for these

numbers, they are 20 = 1 for alignof(char) (this is always a character’s alignment), 22 = 4

for integers, and 23 = 8 for double. This matches their size, but this doesn’t have to be the

case. For reasons that I will explain later, if an object can sit at any specific address, it will

also align at addresses that are multiples of its sizeof() higher, so you can always align

there. You might, however, also be able to align objects at smaller offsets. If you do not

have alignof(), you can use sizeof() to work out where objects are allowed to sit, but

you might be overshooting.

If you go back to the program that generated Figure 2-3, you see that we first defined

a character variable, c, and it got address 0x7ffee0d888ff. Then we defined the integer

i, and if integers can only sit at addresses that are multiples of four, we cannot place it

right after c. An integer has size four (in the example), so if we could place it anywhere,

Chapter 2 Memory, Objects, and Addresses

22

we could put it at 0x7ffee0d88b (that is the first position where we could place it with

four memory addresses up to c). We could have placed it at 0x7ffee0d88fc—the c is

hexadecimal for 12, which is a multiple of 4—but then c is in the way. So we have to go

all the way down to address 0x7ffee0d88f8 before we can find room for the integer. The

double needs to sit at least eight positions lower, so there is room for it, and it has to sit

at an index that is a multiple of eight. Here we are lucky, and we find room at the first

available aligned address, 0x7ffee0d88f0.

With the first struct we made, we have a character first, then an integer, and then

a double. It is only the stack that grows downward, so for all other memory structures,

we look at the addresses from the bottom up, and in Figure 2-5 we see the character

at address 0x7ffeea2488f8, the integer at 0x7ffeea2488fc, and the double at address

0x7ffeea248900. The rule for struct is that the components must come in order, with

the first element at the first address, so there is no wiggle room for where c has to go if

the structure starts at address 0x7ffeea2488f8. The integer has to go at an address that is

a multiple of four, so we have to leave addresses 0x7ffeea2488f9 to 0x7ffeea2488b alone

before we get to 0x7ffeea2488fc. The integer ends at address 0x7ffeea2488ff, and the very

next address is a multiple of eight, so we can place the double there.

When we rearranged the struct, Figure 2-6, the integer has to come first, and it must

sit at an address that is a multiple of four. It ended up at 0x7ffeea2488f0. The next free

address is 0x7ffeea2488f4, but this is not a multiple of eight, so we cannot place the

double there. We have to continue up to the first address that is a multiple of eight, and

that is 0x7ffeea2488f8. The last element, the character, can sit anywhere, so we can place

it right after the double. But if we have all three elements by now, why is the structure still

larger? What is the point of having the extra space after c?

The issue is this: if you put one struct after another in memory, for example, in an

array, C wants element number two to be at the address that is the struct’s sizeof()

after the first. This goes for all types; if you put one after another in memory, then the

distance between them matches their size. That is, after all, what it means to put one

after another; the next one starts where the previous one begins.

So let us imagine that we put two of this struct in an array.

struct data array[2];

Figure 2-7 shows the memory layout of this array with the terminal padding on the

left and without it on the right (but in both cases with the padding between the integer

and the double). When you allocate an array (or dynamically allocated memory from

Chapter 2 Memory, Objects, and Addresses

23

the heap), you get an address where you can always align the first element of any type.

The figure calls that offset zero. The padding between i and d ensures that those two

variables are aligned. If the int needs to sit at addresses that are multiples of four, it is

fine at offset zero (because the first address is always correctly aligned), and the double

sits at offset eight which matches its alignment. The character can sit anywhere, so it is

fine as well. In the second structure, the padding after c ensures that the integer still sits

at an address that is a multiple of four, it sits at offset 24, and the padding up to d ensures

that it sits correctly aligned. The second struct ends at offset 47, so the next free address

is offset 48. If we put another struct there, the integer would be fine; 48 is a multiple of 4.

With the padding, the third double would sit at offset 56, which is a multiple of 8, so that

would be aligned as well. It will continue with correctly aligned elements for as far as the

array goes.

If we didn’t have the terminal padding after c, we would be in the situation on

the right. The first structure is aligned. The first address always is when we allocate

memory, and the padding between i and d ensures that the double is aligned as well.

The character, of course, always is. But if we continue with the second struct right

after c, we immediately get an alignment problem. The structure has size 17: 4 for the

int, then 4 for padding, 8 for the double, and then the char. So the offset after the first

struct is 17 (since we start at 0), and 17 is not a multiple of 4. We cannot put an integer

there. The double would sit at offset 25, which isn’t a multiple of 8, so it cannot sit there

either. The second struct ends at offset 33, so the next could potentially start at 34. That

is a multiple of 4, so we could place an integer there, but the double would have to sit at

offset 42 which isn’t a multiple of 8.

To correctly align the elements inside a struct, C might have to insert padding

between them. Some terminal padding might be necessary as well to make it possible

to put structs into arrays. The size of a struct depends on the size of the individual

components, their alignment constraints, and also the order in which they are declared

inside the structure since the memory will arrange them in that order. You can, in

principle, make a structure more memory efficient by rearranging the components, but

it isn’t worth it. The size of objects and their alignment constraints vary from platform

to platform, so if you optimize the memory for one platform, it won’t generalize to

all platforms. You might make some general rules of thumb about sizes and likely

alignment, and try something based on that, but you will be guessing, and while you

might make a more compact structure on one platform, you might also make it worse

on another. Arranging the components of a structure with this purpose doesn’t give you

Chapter 2 Memory, Objects, and Addresses

24

any guarantees, and it might hurt readability. If you keep components that are related

close together in the structure definition, the code is easier to read. Readability is more

important than micro-optimization. And in the highly unlikely event that the size of a

struct matters, you can always go back and optimize it or pack the data in some other

way. If this is the case, you are also likely to know the platform or platforms where the

issue is, and you can optimize for that. Otherwise, just write your structures the way you

want and let C worry about padding and alignment.

Figure 2-7.  Structure with and without the terminal padding in an array

Chapter 2 Memory, Objects, and Addresses

25

What about unions, then? If they are just memory large enough to hold their largest

component, can’t we get alignment issues there as well? Indeed, we can. Unions must

be large enough to hold the largest components, but that is a minimal size. They can be

larger, and if there are alignment considerations, they will be. The union in the example

in the previous section consisted of a character, an integer, and a double. These can

all align to addresses that are multiples of eight; the char can sit anywhere, the int at

multiples of eight, and the double at multiples of eight. The union got the same size

as the double because that is enough to align the elements. But we can try to put two

elements in a union that are not compatible in their alignment. We can take a double

that sits at multiples of eight and an object that takes up nine memory locations. We can

make such one using a char array of length 9. If the union has size 9, to contain the char

array, we cannot put another copy after it. That would be offset 9 which isn’t a multiple

of 8. We need to put it at the first multiple of 8 address after offset 9 instead, which is 16.

So we would expect such a union to have size 16.

You can examine this on your own computer by running this program:

#include <stdio.h>

union data {
 char c[9];

 double d;

};

#define MAX(a,b) (((a)>(b))?(a): (b))

int main(void)

{

 union data data;
 printf("sizeof data == %zu\n", sizeof data);
 printf("max size of components == %zu\n",

 MAX(sizeof data.c, sizeof data.d));

 printf("data at %p\n", (void *)&data);

 printf("data.c at %p\n", (void *)&data.c);

 printf("data.d at %p\n", (void *)&data.d);

 return 0;

}

Chapter 2 Memory, Objects, and Addresses

26

When I run the program, I get

sizeof data == 16

max size of components == 9

data at 0x7ffeeae468f0

data.c at 0x7ffeeae468f0

data.d at 0x7ffeeae468f0

The elements still sit at the same address as the union (or technically they are such

that they can be converted to it), but the size is 16 instead of 9, the size of the largest

element. Unions have padding just as structs to match alignment constraints.

As an example of a case where the size of an object and its alignment constraints

differ, we can also use a char buffer:

#include <stdio.h>

#include <stdalign.h>

struct data {

 int i;

 char c[9];

};

int main(void)

{

 printf("sizeof components == %zu\n",

 sizeof(char[9]) + sizeof(int));

 printf("sizeof(struct data) == %zu\n",

 sizeof(struct data));

 printf("\n");

 printf("alignof(struct data) == %zu\n",

 alignof(struct data));

 printf("alignment of int == %zu\n",

 alignof(int));

 printf("alignment of char[9] == %zu\n",

 alignof(char[9]));

 return 0;

}

Chapter 2 Memory, Objects, and Addresses

27

If I run it, I get

sizeof components == 13

sizeof(struct data) == 16

alignof(struct data) == 4

alignment of int == 4

alignment of char[9] == 1

The components, c of size 9 because char has size 1 and i of size 4, fill in total 13

memory locations. The structure is larger; it has size 16. This is because, with alignment 4

for integers, we cannot put another instance of the type before 16 addresses after the

first. The structure itself can align at addresses that are multiples of four, however,

and not only addresses that are multiples of its size. We can put the structure at such

addresses because the initial integer will align there (and the char buffer will align

anywhere). If the integer aligns there, it will also align at the first address after the

structure. If the first address is a multiple of 4, then addresses that are multiples of 16

following it will be as well.

Alignment might sound frightfully complicated at this point, and you might worry

that it is something you need to consider every time you work with addresses. But the

truth is that you rarely have to think about it at all. If you declare a variable, its data will

sit at an address that is correctly aligned to its type. If you declare an array, the memory

will be correctly aligned for each element in it (with the appropriate padding for structs

and unions that C handles automatically). If you dynamically allocate memory, then it

is correctly aligned for all types. The only way that you can get into trouble is if you take

the address of an object and pretend that it is a pointer to an object of a different type.

The solution to that problem is simple: don’t do that. There are a few safe exceptions, but

generally it is not a meaningful thing to do. You do not know how the data of any given

type is represented; it will vary from platform to platform, so trying to treat one type as

if it was another is not a meaningful thing to do. You can do it on a particular platform,

where you know the representation of different types, but there you can also know the

alignment constraints of those types. Once you decide to only support one, or a fixed

number of platforms, you can specialize your code for that and then deal with alignment

issues. If you want to write platform-independent code, you can almost only get into

trouble with alignment if you do something you shouldn’t be doing in the first place.

I can think of a few legitimate cases where you would need to consider alignment, but

they are exceedingly rare, certainly not something you would encounter daily. Alignment

is important for the hardware, but in day-to-day programming, C takes care of it.

Chapter 2 Memory, Objects, and Addresses

28

�Call Stacks and the Lifetime of Local Variables
To wrap up the chapter, we will look at local variables, when their memory is allocated,

and how long they stick around. Dynamically allocated memory, the topic of Chapter 9,

we wait with until that chapter, and global variables live forever, so they are simple to

understand.

When we declare a variable, C will set aside space for it in memory—in principle,

at least. When you use variables in expressions, the compiler might work out that it can

eliminate variables by simplifying the expressions they are used in, substituting variables

for the values it knows they have. Or it might work out that it can generate faster code by

using a register on the CPU rather than a memory cell. But in principle, it sets aside one

or more memory cells to hold the value in the variable, and if you ask for the address

using an ampersand, you will get it. But not all variables stick around forever. Global

variables exist as long as your program runs, yes, but local variables and the parameters

of the functions you write do not. They only live as long as a function call is active.

What do I mean by “active”? The conceptual model of function calls you need to

have is the call stack. We saw it in the generic memory model of processes, but we

didn’t discuss what it does. C is free to implement function calls anyway it wants, but

modern computers use stacks, and so do all C implementations I know of, so it is likely

to be more than a conceptual framework to think about functions with. The idea is this:

when you call a function, C will push a so-called stack frame unto a stack, a first-in-

first-out data structure. This stack frame contains the space for all parameters and local

variables and some bookkeeping information about how to return from the function

call. If you call another function from inside the first function, that function call does the

same thing—it pushes a stack frame on the stack with room for its local variables and

its bookkeeping. When you return from a function, C removes the stack frame from the

stack and uses the bookkeeping to return the program to the state it was in before the

function call. When the stack frame is gone, so are the local variables.

This is how it is often implemented in practice; although it doesn’t match any

particular platform, the explanation should only be used to understand the basic ideas.

Your computer uses at least two pointers: one that keeps track of where in your code

you are—an instruction pointer—and one that keeps track of the stack, the stack pointer.

As your program runs, the computer takes the instruction that the instruction pointer

indicates, executes it, and increments the pointer. The increment is usually to the next

instruction, but when you have if-statements or loops, it will jump somewhere else. When

you call a function, the computer should move the instruction pointer to the code in

Chapter 2 Memory, Objects, and Addresses

29

the function and execute what is there. When the function returns, it needs to move the

instruction pointer back to just after the function call. It needs to store the instruction

pointer it should return to somewhere; it cannot use a global location because then

you couldn’t call another function from the first without overwriting it, so it goes on the

stack, which means that it writes it where the stack pointer sits. In the simplest form, the

computer could save the instruction pointer at the memory location where the stack

pointer is and then decrement the stack pointer. (I use decrement here since our stack

moves from high to low addresses, but it could just as well move from low to high and

increment instead). If there are further function calls, the instructions are saved, one after

another, as the stack pointer moves. When the computer needs to return from a function, it

can increment the stack pointer, and it will find the saved instruction pointer there.

However, we also need to allocate memory for local variables, and other temporary

values if required, and the stack is an obvious place to put this memory. In that case, the

location of the stored instruction pointer is not as simple, and when we need to move

the stack pointer, we need to know how much memory we have allocated in a function to

move it the right amount. In the following description, I will use three pointers instead,

and I assume that all three are stored in registers, so I don’t need to worry about how to

find them. The pointers are the instruction pointer, ip; the stack pointer, sp, that points

at the next address where we can allocate memory on the stack; and then the frame

pointer, fp, which points at the memory address where the stack pointer was when a

function call started. When we allocate memory on the stack, the stack pointer moves,

but the frame pointer remains constant unless we call a function or return from one,

and we can use it to access local variables. They will be at a fixed offset from the frame

pointer.

int foo(int x, int y)

{

 return x + y;

}

int main(void)

{

 /* 1 */ int a = 13, b = 42;

 /* 2 */ int c = foo(a, b);

 /* 3 */ return 0;

}

Chapter 2 Memory, Objects, and Addresses

30

The numbers in main() are there so I can refer to them. I will pretend that the

instruction pointer points at lines in the code, instead of the machine code the compiler

generates. It will be simpler for everyone.

Now, look at Figure 2-8. We start the example at line 2 in main(). Since main() is

also a function, there is some stack above it, but we do not know what happens with

our program before main() is called, so we ignore it. In main(), we have allocated two

variables, a and b; they are local variables and went on the stack. The stack pointer points

at the next free address, below a and b, and the frame pointer points at the beginning of

main()’s data.

The next action we must take is calling foo(). There are different ways a computer

uses to pass arguments to functions, but a stack is a common approach, and I will

assume that this is the case in the example. It is my example, and I get to decide. In

reality, arguments are passed through registers where possible.

To call foo(a,b), we must put the values of a and b on the stack. Arguments are

passed as values in C, so it is the values and not, for example, the location of the variables

we need. So we push those two values on the stack, decrementing sp, so it points past

them, and then we are ready for the function call.

When we call foo(), our computer saves the frame pointer, so we can restore it after

the call, and it saves the instruction pointer so it knows where it should return to after the

call. In our example, that is line 3 in main(). Now the stack pointer points to the first free

memory location on the stack, which is where foo() can put its data. The frame pointer

should go to that location as well, so foo() knows where its memory starts.

Figure 2-8.  The stack in action

Chapter 2 Memory, Objects, and Addresses

31

Inside foo(), the function needs to get its input into its variables. If you go two

locations back from the frame pointer, you get the memory locations where the

arguments are. Technically, it can just get them from that location when it needs them,

but if it modified them, and the calling function planned to do something with them

after, it would be unpopular, so it copies them. It does its addition and is ready to return.

When it does, we need to restore the previous stack frame, and we need to return the

instruction pointer to the next instruction in main(). We can get the instruction pointer

by looking at the address one above fp, we can restore the stack pointer moving it two

addresses higher than fp, and then we can restore fp from the saved value.

After the call, the stack still holds the function arguments. They are not in variables

in the C program, but they are there in the running code, and some assembly program

might find a way to exploit that. We don’t, so we get rid of them. Deallocating memory at

the top of the stack is easy. Increment the stack pointer, so they fall below it, and we can

consider them gone. The actual data is still there; we don’t erase it in any way, but next

time we put data on the stack, we overwrite it. The last thing we do in the example is to

save the return value of foo() in a new local variable, c. We allocate the memory for it, by

decrementing the stack pointer, and put the value there.

We didn’t see the return value of the function anywhere in the example. It could have

gone on the stack, so the caller could get it from there, but return values usually go in a

register, so I decided not to put them on the stack here.

If you look at any specific hardware, function calls are almost certainly implemented

in a different way than I just described. The registers will be different, some setup before

function calls and cleanup after will be automatic, and some are the responsibility of

the caller or callee. There will be many differences in details. But the overall description

will match. You have a stack, and local variables are put on that stack as needed. When

a function returns, the memory the local variables contained is freed for other purposes,

and you should consider the objects gone forever.

The C standard does not guarantee that function calls are implemented by a stack

at all, so use the description here as a mental model only. It is highly likely that function

calls are implemented as a variant of this, but they could be implemented in other ways.

The rules for how long a local variable stick around is the same, however. The standard

does guarantee this.

Chapter 2 Memory, Objects, and Addresses

33
© Thomas Mailund 2021
T. Mailund, Pointers in C Programming, https://doi.org/10.1007/978-1-4842-6927-5_3

CHAPTER 3

Pointers
You can store the address of an object in another object, and this is where we get to

pointers. A pointer is a variable that stores memory addresses of other objects. You

declare a variable to be a pointer by adding an asterisk, *, after the type it points to. If we

declare

int i = 1;

int *pi = &i;

int **ppi = π

then i is an integer, pi is a pointer to an integer (it has type int *), and ppi is a pointer

to a pointer to an integer (it has type int **, so it is a pointer to int *, which is a pointer

to an integer). The pi variable stores the address for i (because we assign pi = &i), and

the ppi variable stores the address for pi.

If we run the code

printf("i = %d, &i = %p\n", i, &i);

printf("pi = %p, &pi = %p\n", pi, &pi);

printf("ppi = %p, &ppi = %p\n", ppi, &ppi);

we can see the values the variables hold, and the addresses they sit in. On my computer,

I got

i = 1, &i = 0x7ffee283d8fc

pi = 0x7ffee283d8fc, &pi = 0x7ffee283d8f0

ppi = 0x7ffee283d8f0, &ppi = 0x7ffee283d8e8

This means that the integer in variable i sits at memory address 0x7ffee283d8fc.

When we assigned &i to pi earlier, it got this address as its value. The value sits at address

&pi, which is 0x7ffee283d8f0. The ppi variable holds pi’s address, 0x7ffee283d8f0, and

sits itself at address 0x7ffee283d8e8; see Figure 3-1.

https://doi.org/10.1007/978-1-4842-6927-5_3#DOI

34

On my machine, the pointers take up 8 bytes (you can check how large they are on

your machine using, e.g., sizeof pi), so that is what I have put in the figure. The arrows

pointing from pi to i and ppi to pi is the way we typically draw pointers. Later on, it

becomes cumbersome to explicitly position values and pointers in memory, and we will

represent pointers as arrows to objects instead.

For full disclosure, I have to say that you should not reason the way I just did about

the memory layout. There are no guarantees in the C standard about where independent

objects sit in memory, and even if the addresses look like they do here would be

arranged in this way. Regardless of what the pointer values are, the variables could be

arranged in other ways. On my machine, they are arranged this way, but you cannot

make assumptions in portable code. It is not important for the example where exactly

they sit in memory; however, the structure will be the same. The ppi pointer contains the

memory address of the pi pointer that in turn holds the address of the integer i.

Knowing the address of an object is of little use if we cannot also access the object

and manipulate the object through the pointer. We can do both by dereferencing

pointers. If you put an asterisk in front of a pointer, you get the object that it points to.

For example, this printf() call will print the value in i because we get what pi points to

when we write *pi, and we print the value in pi (i’s address) when we get *ppi:

printf("i = %d, pi = %p\n", *pi, *ppi);

Chapter 3 Pointers

35

If you want the value in i from ppi, you must dereference twice. Writing *ppi gives

you the value in pi, which is i’s address, and dereferencing that gives you i, so **ppi

refers to i.

If you assign to a dereferenced pointer, you change the object that it is pointing at. If

you run this code:

*pi = 2;

printf("i = %d, pi = %p, ppi = %p\n", i, pi, ppi);

**ppi = 3;

printf("i = %d, pi = %p, ppi = %p\n", i, pi, ppi);

you should get output that looks like this (except for the exact addresses):

Figure 3-1.  Memory location and values of i, pi, and ppi

Chapter 3 Pointers

36

i = 2, pi = 0x7ffee283d8fc, ppi = 0x7ffee283d8f0

i = 3, pi = 0x7ffee283d8fc, ppi = 0x7ffee283d8f0

In both assignments, we change i because that is what both *pi and **ppi refer to.

We do not change pi or ppi. You do not modify a pointer when you modify what it points

at. If you want to change the pointer, you must assign to the pointer itself. Here, for

example, we point pi to another integer’s address:

int i2 = 42;

pi = &i2;

Now, pi holds the address of i2 instead of i. The assignment doesn’t change i or any

of the other variables, but it changes the value of pi such that it now points elsewhere to

the address of i2.

Pointers give us the possibility to refer to the same value through more than one

variable. That is one of the purposes of them. When this happens, we call it aliasing.

First, *pi was an alias for i, and when we assigned &i2 to *pi, it became an alias for i2.

�Call by Reference
What is the point of having pointers if they only let you alias variables you already

have? Not much, but that is not what we use them for. If it were, this would be the end

of the book. There are, of course, other uses in contexts that we will cover in detail in

the remainder of the book. In this section, I will motivate pointers via so-called call-by-

reference function calls, something you cannot do without pointers in C. Then, for the

remaining sections in the chapter, I will go through more technical aspects of pointers

and pointer types.

In C, functions are call by value. What this means is that when you provide an

argument to a function call, that value goes into the local variable that the corresponding

function parameter holds. Consider this function:

void doesnt_mutate(int i)

{

 i += 42;

}

Chapter 3 Pointers

37

It takes an integer as its single parameter, the argument will be held in the local

variable i, and the function then adds 42 to it. This modifies the value stored in i. Now

let us imagine that we call the function like this:

int j = 0;

doesnt_mutate(j);

What then happens to j? If you have written C functions before, and I assume that

you have, then you know that j doesn’t change because we call doesnt_mutate() with

it. The variable j holds an integer, it is zero since we initialize it as such, and it remains

zero after the function call. What we pass to the function is the value that j holds, zero,

but not the variable itself. Inside the function call, i will get the value zero when we call

the function, and then it is updated. But the two integer variables are stored in different

places in memory, and nothing connects them; see Figure 3-2 A).

The function call copies the bytes that variable j holds into the memory that

contains the parameter i, and it is only the memory in the second location that we

modify inside the function call.

If we have a pointer to the address of the function argument, however, we can write

values into it; see B). If our function looked like this

Figure 3-2.  Pointer arguments to functions

Chapter 3 Pointers

38

void mutate(int *ip)

{

 *ip += 42;

}

and we called it like this

mutate(&j);

then the ip variable inside the function call holds the address of j, not its value. It is still a

local variable; there is still an object sitting on the stack that contains its memory, but the

local variable is a pointer to j. If we dereference ip, we look at the memory where j sits,

and if we modify the memory there, then we modify the memory that j holds. So with

this function, we are changing j. With the pointer, you have access to the memory in the

calling function, not just the memory of the variable in the callee. You get a reference to

an object instead of its value—that is call by reference.

The function argument, ip, is still a local variable. It resides on the stack in the

mutates() call’s stack frame. If you change the memory it sits in, say

void foo(int *ip)

{

 ip = 0;

}

then you have changed the local variable, and you have not affected the caller. If you

want to change a pointer, then you need a pointer to a pointer:

void bar(int **ipp)

{

 *ipp = 0;

}

To change an object, you need a reference to it, which means that you need a pointer to

it. A pointer isn’t different from other types in this regard; if you want a function to change

an argument pointer, then it needs a reference to it, that is, it needs a pointer to it.

Chapter 3 Pointers

39

If possible, you should avoid writing functions that have side effects through

references, but they do have their uses in many places, where they can simplify your

code. Mostly, however, you want to use them when you operate on structures that

represent more complex types of objects. This is particularly relevant when you build

data structures where you want to update different elements throughout your program.

We will dig into that in Chapters 11 to 12, but here I will show a small example.

Say we need to write a program that manipulates points and rectangles. This could,

for example, be part of a GUI application. It is natural to define a type for points and

rectangles and functions for moving them around. The following is an example with

somewhat limited functionality that doesn’t use pointers:

#include <stdio.h>

typedef struct point {

 double x, y;

} point;

point move_point_horizontally(point p, double amount)

{

 p.x += amount;

 return p;

}

point move_point_vertically(point p, double amount)

{

 p.y += amount;

 return p;

}

point move_point(point p, double delta_x, double delta_y)

{

 p = move_point_horizontally(p, delta_x);

 p = move_point_vertically(p, delta_y);

 return p;

}

Chapter 3 Pointers

40

void print_point(point p)

{

 printf("point <%.2f, %.2f>\n", p.x, p.y);

}

typedef struct rectangle {

 point upper_left;

 point lower_right;

} rectangle;

rectangle move_rectangle(rectangle rect,

 double delta_x,

 double delta_y)

{

 rect.upper_left =

 move_point(rect.upper_left, delta_x, delta_y);

 rect.lower_right =

 move_point(rect.lower_right, delta_x, delta_y);

 return rect;

}

void print_rectangle(rectangle rect)

{

 printf("rectangle:\n");

 print_point(rect.upper_left);

 print_point(rect.lower_right);

 printf("\n");

}

int main(void)

{

 point p = { .x = 0.0, .y = 0.0 };

 print_point(p);

 p = move_point(p, 10, 10);

 print_point(p);

 printf("\n");

Chapter 3 Pointers

41

 rectangle rect = {

 .upper_left = { .x = 0.0, .y = 10.0 },

 .lower_right = { .x = 10.0, .y = 0.0 }

 };

 print_rectangle(rect);

 rect = move_rectangle(rect, 10, 10);

 print_rectangle(rect);

 return 0;

}

It might not be the most realistic code. I probably wouldn’t have written functions

move_point_horizontally() and move_point_vertically(), or if I did I would not

implement move_point() based on them but instead go the other way, but the code

illustrates a point (no pun intended). In the code, since we cannot modify our input

beyond the local variable for a point or a rectangle we get as an argument, we must

return a new object every time we want to modify one, and we need to overwrite the old

one. If we assume that both passing an argument and returning one require copying

the object—the compiler might be able to optimize something away, but it could be two

copies—then the move_point() function results in multiple unnecessary copies.

The move_point() function potentially copies a point into the parameter, and it has

to return a point, that is, two copies. I say potentially because the compiler might inline

functions and save copying, but in the worst case, it needs to copy everything. Each of

the function calls in the function body might also copy the object twice. So we could end

up with copying the point six times.

point move_point(point p /* 1 */, double delta_x, double delta_y)

{

 p = move_point_horizontally(p, delta_x); /* 2 copies */

 p = move_point_vertically(p, delta_y); /* 2 copies */

 return p; /* another copy */

}

There is nothing wrong with copying structures as input and output, and for smaller

structures, you do not pay much of a performance penalty, but it is wasteful. Sometimes,

it is worthwhile because you get cleaner code. For large objects, however, you should

prefer to pass a pointer to the object instead of copying it.

Chapter 3 Pointers

42

With move_rectangle(), it gets worse. Here, we might need to copy two points in

and out of the function, and the calls to move_point() inside the function involve the six

copies we counted earlier, each.

rectangle move_rectangle(rectangle rect, /* 2 */

 double delta_x,

 double delta_y)

{

 rect.upper_left = /* 6 */

 move_point(rect.upper_left, delta_x, delta_y);

 rect.lower_right = /* 6 */

 move_point(rect.lower_right, delta_x, delta_y);

 return rect; /* 2 */

}

The larger the object, and the more components it has, the more you have to copy.

If you want to modify an object, you have to overwrite it every time you call a

function. If we write

point p = { .x = 0.0, .y = 0.0 };

p = move_point(p, 10, 10);

print_point(p);

it is easy to forget the assignment and end up with

point p = { .x = 0.0, .y = 0.0 };

move_point(p, 10, 10);

print_point(p);

This is valid C code; the compiler won’t complain, but you do not get what you want.

If you pass the objects to the functions as pointers, you can modify them without

copying them. You still have to copy data, the input pointer, but that is always a relatively

small object that is quickly copied (and will be copied in a register in practice which

makes it very fast).

A pointer version of move_point_horizontally() will look like this:

void move_point_horizontally(point *p, double amount)

Chapter 3 Pointers

43

{

 p->x += amount;

}

The p->x syntax gets the component x from the point structure through a pointer.

It is syntactic sugar for (*p).x. It is a question of taste which of the syntaxes you prefer.

I always use the arrow operator, but I know friends who swear to the dereference syntax.

If you are consistent, and your choice matches your collaborators, then you are fine.

The complete rewrite is listed in the following. The main difference, except for

passing the points and rectangles as references, is that we do not return an updated

object from any of the functions. We do not need to, as we modify the input object where

it is.

#include <stdio.h>

typedef struct point {

 double x, y;

} point;

void move_point_horizontally(point *p, double amount)

{

 p->x += amount;

}

void move_point_vertically(point *p, double amount)

{

 p->y += amount;

}

void move_point(point *p, double delta_x, double delta_y)

{

 move_point_horizontally(p, delta_x);

 move_point_vertically(p, delta_y);

}

Chapter 3 Pointers

44

void print_point(point *p)

{

 printf("point <%.2f, %.2f>\n", p->x, p->y);

}

typedef struct rectangle {
 point upper_left;

 point lower_right;

} rectangle;

void move_rectangle(rectangle *rect,

 double delta_x,

 double delta_y)

{

 move_point(&rect->upper_left, delta_x, delta_y);

 move_point(&rect->lower_right, delta_x, delta_y);

}

void print_rectangle(rectangle *rect)

{

 printf("rectangle:\n");

 print_point(&rect->upper_left);

 print_point(&rect->lower_right);

 printf("\n");

}

int main(void)

{

 point p = { .x = 0.0, .y = 0.0 };

 print_point(&p);

 move_point(&p, 10, 10);

 print_point(&p);

 printf("\n");

 rectangle rect = {

 .upper_left = { .x = 0.0, .y = 10.0 },

 .lower_right = { .x = 10.0, .y = 0.0 }

 };

Chapter 3 Pointers

45

 print_rectangle(&rect);

 move_rectangle(&rect, 10, 10);

 print_rectangle(&rect);

 return 0;

}

A separate issue to taking pointers as arguments is returning pointers. You can return

pointers from a function as you can return any other type, but you have to be careful with

what that pointer contains!

Here is a small example that might not appear dangerous at first sight, except for the

BOOOM!!! comment.

#include <math.h>

#include <float.h>

#include <stdio.h>

typedef struct vector {

 double x;

 double y;

 double z;

} vector;

void print_vector(vector const *v)

{

 double x = v->x, y = v->y, z = v->z;

 printf("<%.2f, %.2f, %.2f>\n", x, y, z);

}

double vector_length(vector *v)

{

 double x = v->x, y = v->y, z = v->z;

 return sqrt(x*x + y*y * z*z);

}

Chapter 3 Pointers

46

vector *shortest(int n, vector *vectors[n])

{

 vector *shortest = &(vector){

 .x = DBL_MAX, .y = DBL_MAX, .z = DBL_MAX

 };

 double shortest_length = vector_length(shortest);

 for (int i = 0; i < n; ++i) {
 vector *v = vectors[i];

 double length = vector_length(v);

 if (length < shortest_length) {
 shortest = v;

 shortest_length = length;

 }

 }

 return shortest;
}

int main(void)

{

 vector *vectors[] = {

 &(vector){ .x = 10.0, .y = 13.0, .z = 42.0 },

 &(vector){ .x = -1.0, .y = 32.0, .z = 15.0 },

 &(vector){ .x = 0.0, .y = 3.0, .z = 1.0 }

 };

 print_vector(shortest(3, vectors));

 print_vector(shortest(2, vectors));

 print_vector(shortest(1, vectors));

 print_vector(shortest(0, vectors)); // BOOOM!!!

 return 0;
}

We have a 3D vector type, and we have a function, shortest(), that finds the shortest

vector in an array (for array details, I once again refer you to Chapter 5). When finding

the shortest vector, to avoid a special case when the input is an empty sequence, we say

that if there are no vectors, then the shortest vector is one with maximal values for all

three coordinates. That is the DBL_MAX defined in <float.h>. The

Chapter 3 Pointers

47

 (vector){

 .x = DBL_MAX, .y = DBL_MAX, .z = DBL_MAX

};

creates a vector with the initialization from inside the curly brackets, and adding & to it

vector *shortest = &(vector){

 .x = DBL_MAX, .y = DBL_MAX, .z = DBL_MAX

};

gives us its address. We put that address in the shortest pointer to use as the default

value. It will be replaced as soon as we find a smaller value.

However, in the BOOOM!!! line, where we do have an empty sequence, things go

sideways. Potentially, anyway, it will depend on your architecture how bad it goes. The

shortest() function returns a pointer to the default value we created, but that is a variable

allocated on the stack, and we have just returned from the function that allocated it.

The address for it is still there, and presumably the data is as well, but as soon as we call

another function, the data could be overwritten.

The error is especially nefarious in this program because there is a good chance that

you do not see it in this code. When we call print_vector(), the compiler might not

allocate space for its local variables, it can optimize them away and get the values from

v, and v might not overwrite the stack location where longest sits. The printf() call

might not overwrite it either. And as long as the function calls leave the object alone,

you will not see that it doesn’t exist any longer. The data is still there, after all. As long as

you do not overwrite it, you will not see any problems. So you could test it and observe

that everything goes according to plan. And then, one day, you use the function, call a

function that overwrites the object, and now you are in trouble. Weeks, months, or years

after you tested that everything worked.

We can try to fake this situation with a function that writes to a large part of the stack:

void trash_stack(void)

{

 volatile char x[1000];

 for (int i = 0; i < 1000; i++) {

 x[i] = 0;

 }

}

Chapter 3 Pointers

48

The volatile is there to prevent the optimizer from removing the loop. Without it,

it can conclude that we never use x and eliminate it. By making x volatile, we tell the

compiler that someone else might be looking at it, so it won’t optimize it away.

Now call it between getting the longest object and printing it:

vector *v = shortest(0, vectors);

print_vector(v);

trash_stack();

print_vector(v);

The first call to print_vector() might give you the expected output, but the second

call probably won’t. In the second call, you are likely to see that the longest vector is now

the shortest: (0,0,0). This is not something that your compiler will catch—not unless it

caught that you returned the address of a local variable in the first place—but it will likely

break your program. And it could be hard to track down this bug.

Worse, it could still work fine for you, with your compiler and on your development

machine, but someday someone else will compile it when your code is rolled out in

production, and then BOOOM!!! is too mild a word.

It is safe to pass an address of an object on the stack along to further function calls.

The object is alive while those functions execute, and it will not be deallocated until they,

and the calling function, return. But you should never point to a local variable that is

no longer alive. If you never return the address of a local variable, you will be fine, so be

careful when you return pointers to ensure that they cannot point at local variables. If

you need to return a pointer from a function, do not allocate it on the stack. If you need

to create an object to return the address of, you must use dynamic memory allocation;

see Chapter 9.

We could try to get around the problem by making the default vector static. Then

it wouldn’t be destroyed when we return from shortest(), but we would get another

problem: if we get a pointer to the static default, we can change it, and that would

modify the behavior of all future calls to shortest().

We would be better off to choose a different default to return from shortest() when

we do not have any elements to choose the shortest from. We need to return an address

because that is the return type, but it must be something we cannot confuse for a valid

vector. There is a special kind of pointer for this, the NULL pointer.

Chapter 3 Pointers

49

�NULL Pointers
NULL pointers are pointers that hold a unique value that sets them apart from other

pointers and indicate that they do not point at anything. This is different from not

actually pointing at anything. A pointer that isn’t initialized, or points at a variable that

no longer exists, does not point at anything either. We just cannot recognize that such

a pointer refers to memory that it is no longer valid to access. With a NULL pointer,

we know that it doesn’t refer to anything, and we know that we should refrain from

dereferencing it. Most likely, dereferencing a NULL pointer will crash your program, but

it is up to the underlying platform, so you cannot rely on it. Nothing good will come of

dereferencing a NULL pointer, though you can safely assume that.

You set a pointer of any type to a NULL pointer using the literal 0 or the macro NULL

from <stddef.h>.

int *i_null = 0; // integer NULL pointer

double *d_null = NULL; // double NULL pointer

It is a question of taste whether you use 0 or NULL. I will use 0 in this book.

In the comments here, I specified which type of NULL pointer they were, because the

standard allows for different NULL pointers for different types. However, if you assign a

NULL pointer of one type to another type, you get that type’s NULL pointer:

i_null = (int *)d_null; // Still an integer NULL pointer

and NULL pointers compare equal

if (i_null == (int *)d_null) printf("Yep!\n");

if (d_null == (double *)i_null) printf("Also yep!\n");

Comparing any NULL pointer to NULL or 0 also evaluates to true.

if (i_null == NULL) printf("Yep!\n");

if (d_null == 0) printf("Also yep!\n");

NULL pointers, however, do not compare equal to any other pointer.

So

int *ip = ...; // any value that is not a NULL pointer

if (i_null == ip) printf("This doesn't happen.\n");

if (ip == 0) printf("Also doesn't happen.\n");

Chapter 3 Pointers

50

So there is not much use in thinking about NULL pointers of different types as being
different. They are simply allowed to be represented differently, but as the standard does
not specify how they must be represented, merely how they should behave, it makes no
practical difference.

However, the representation can matter if you try to assign zero to a pointer in some
other way.

int zero = 0;
int *ip = (int *)zero;

Here, you assign an integer to ip, and you are allowed to do this. You can use it to
point to a specific address. For embedded systems, for example, this is useful. It is highly
platform dependent, and thus not portable, so it is not something we do in this book, but
it is allowed. However, you have given ip the address zero, and NULL is not defined to be
zero. The literal 0, when you assign it to a pointer, means the NULL pointer. The compiler
has to give ip the bit pattern it uses for NULL pointers, and it has to implement the rules
for NULL pointers. Since NULL pointers typically are the zero address, it will likely work,
but this potentially has a different semantics than assigning the literal 0. You should not
get up to such shenanigan; use 0 or NULL.

If you use a pointer as a Boolean:

if (p) {
 // Do something...
}

then p evaluates to false if p is a NULL pointer, and otherwise it evaluates to true.

if (!p) {
 // We have a NULL pointer
} else {
 // p is not NULL. It points at *something*
 // but it might point at something invalid
}

Again, don’t rely on any particular representation of a pointer. It is when you use a
pointer as a truth value that the NULL pointer rules apply. This might not be the same as
testing if p is NULL:

int null = 0;
int *p = NULL;

if (p == (int *)null) // do stuff

Chapter 3 Pointers

51

Here, you should compare with NULL:

if (p == NULL) // do stuff

or with the literal 0

if (p == 0) // do stuff

(this will work because both NULL and 0 are NULL pointers here; they have that type

when we compare with a pointer), or you should use simply p as a truth value:

if (p) // do stuff

Those are the ways you should check if a pointer is NULL. Otherwise, you are

entering undefined behavior by relying on the bit representation of NULL pointers.

Pointers are not automatically NULL when they do not point at a valid object. It

would require C to keep track of all addresses that you have assigned any pointer to,

which would incur appreciable overhead in your programs, nor does C automatically

initialize pointers to be NULL. C doesn’t initialize automatic, that is, stack-allocated

variables in general, and the same holds for pointers. You have to explicitly state that a

pointer doesn’t point at anything by assigning it 0 or NULL. It is good practice to initialize

pointers to be NULL if you do not have a better value, but it is a question of taste whether

you do it if the control flow is simple enough to make it clear that the pointer will be

assigned to shortly. I tend to always start out with a NULL pointer unless I have a value to

assign it right away.

In the example from the previous section, where we returned a pointer to a stack-

allocated object, we can use a NULL pointer instead. If the input to shortest doesn’t

have at least one element, we return a NULL pointer, and then we let the caller work out

what to do about it.

vector *shortest(int n, vector *vectors[n])

{

 if (n < 1) return 0; // Return a NULL pointer

 vector *shortest = vectors[0];

 double shortest_length = vector_length(shortest);

 for (int i = 1; i < n; ++i) {

 vector *v = vectors[i];

 double length = vector_length(v);

Chapter 3 Pointers

52

 if (length < shortest_length) {

 shortest = v;

 shortest_length = length;

 }

 }

 return shortest;

}

If the caller wants a default, they are responsible for choosing it.

vector const longest = {

 .x = DBL_MAX, .y = DBL_MAX, .z = DBL_MAX

};

vector const *v = shortest(0, vectors);

v = v ? v : &longest;

print_vector((vector *)v);

In v ? v : &longest, we use the return value from shortest() as a truth value. The

expression says that if v is not NULL, then we use it, and otherwise we use the longest

vector.

This code is far from safe. We create a const object because we do not want to

change longest, but we cast the const away. If we wanted a constant longest object, we

could have defined a global variable in the first place, but we discarded that solution

earlier. We shouldn’t use one in shortest() because that makes assumptions about

what the caller wants with the shortest vector. Leaving the decision about what to do if

there isn’t a shortest vector to the caller is better, because they know what they want to

do with the vector they get, and they can decide what the appropriate action is.

If we start allowing NULL pointers in our code—and generally we should—then it is

a design choice which functions should handle them. Some we might allow assuming

that they never get NULL input, while others must be able to handle them. If we leave the

vector_length() function as it is:

double vector_length(vector *v)

{

 double x = v->x, y = v->y, z = v->z;

 return sqrt(x*x + y*y * z*z);

}

Chapter 3 Pointers

53

then it cannot handle NULL. The v-> operation dereferences the pointer, and

dereferencing NULL pointers is undefined behavior, typically crashing your program. It

is reasonable to require that this function cannot handle NULL pointers. It should return

the length of a vector, and NULL means we do not have a vector, so what would a natural

return value be in that case?

There is nothing in print_vector()’s responsibility that says that it cannot print a

NULL vector, so we can update it to do this:

void print_vector(vector const *v)

{

 if (!v) {

 printf("NULL\n");

 } else {

 double x = v->x, y = v->y, z = v->z;

 printf("<%.2f, %.2f, %.2f>\n", x, y, z);

 }

}

With dynamic memory management, Chapter 9, we use NULL pointers to handle

allocation errors, and when we build recursive data structures, Chapters 11 to 12, they

are the go-to value for the base cases in the recursion.

�Const and Pointers
If you declare a variable using the const keyword, it tells the compiler that you are

declaring a constant, a variable that shouldn’t change. It does two things: it will make the

compiler complain if you try to change the value of a constant, and it gives the compiler

the option of optimizing references to the value because it knows that you promised not

to change that value. If you declare an integer, you can make it constant by putting the

const keyword before or after the type:

const int i = 42;

or

int const i = 42;

Chapter 3 Pointers

54

You can read the first as “a constant integer i” and the second as “an integer constant

i.” Either formulation works, and both declarations do the same thing. They make it a

compilation error to change the value of i.

Early on, I got used to the first variant, and it is the one I instinctively use, but if you

are just learning C, I urge you to use the second instead, and I have done my best to only

use that variant in this book. If I have messed up in places, I beg your forgiveness. It is

hard to change an old habit. The reason that I think the second is better is that it makes it

easier to combine pointers and qualifiers such as const, as we shall see in this section. If

we didn’t have the first variant, we would have a consistent rule for how to specify which

types are constants and which are not; with the first rule, we have a special case for the

base type. Special cases too often mess things up, so avoid them if you can. If you get

started with the first variant, it is as hard to switch to the second as it is quitting smoking,

so don’t get started. You should only ever use the second variant.

Back to const variables! If you declare a variable const, then you cannot assign a

new value to it later, and that rule is easy to remember. But if you add pointers to the mix,

things get muddier. A const variable sits somewhere in memory, at least if the compiler

hasn’t optimized that away, so you can get a reference to that address. If you get a pointer

to that address that you are allowed to write through, you could change the “constant.”

What happens, however, is where it can get complicated.

If you declare a pointer, the type before the * is the type you point at. So if you declare

const int *ip;

(the first variant), you get a pointer to const int. The same, of course, is the case if you

declare

int const *ip;

(the second variant), which gives you a pointer to int const which is the same qualified

integer.

This pointer can point to our int const variable i from before because we have

declared that we shouldn’t be allowed to change what it points at. We have declared that

we don’t want to change i, so we shouldn’t be able to do it indirectly either. If we say that

ip points to a constant, then the compiler will check that we do not change the object we

point to, and so we get the same type safety through *ip and i when we do

int const i = 42;

int const *ip = &i;

Chapter 3 Pointers

55

Both variables say that they will not change the value in i. So here, all is well. But you

could also write

int const i = 42;

int *ip = (int *)&i;

Now you have a pointer through which you can change i, even though you have

declared i to be const! You are allowed to do this. You are allowed to cast a qualified

type, but are you then allowed to change what ip points at? The compiler will not

complain; you have told it that ip points to a non-const integer, but what will happen at

runtime?

The answer is an unsatisfactory “we don’t know.” The standard says that it is undefined

behavior to change a variable we defined as const. In practice, however, compilers usually

exploit undefined behavior for optimization purposes. If you allow it to do what it wants in

a given situation, it might as well try to make the code more efficient.

If you run this:

int const i = 42;

int *ip = (int *)&i;

*ip = 13; // i == 42 or i == 13?

printf("i == %d, *ip == %d\n", i, *ip);

chances are that i and *ip have different values after you assign to ip. Even though we

have declared i as const, it doesn’t quite mean that it is a constant the way compile-time

constants are. It has an address when you use &, so *ip will point at an address that can

contain an integer. This is safe because int const and int are the same underlying type,

and they only differ in the qualifier const. So you can write to *ip, and it gets the value

13, so that is what we will print for that variable in the last line. However, the compiler

might recognize that i is the constant 42 and use that in the call to printf(). So although

we are talking about the same memory address, we get two different values after the

compiler has optimized the code. Or then again, you might get something completely

different. You have invoked undefined behavior, after all.

To make things more complicated (because why not?), it is not undefined behavior

when you modify a variable that wasn’t declared const, even if the code goes through a

pointer to const at some point before modifying it.

Chapter 3 Pointers

56

Imagine that we have a function such as this:

void foo(int const *cip)
{
 int *ip = (int *)cip;
 *ip = 5;
}

We take a pointer to int const, we cast it, and then we modify what it points to. We
are allowed to do this. Then we run code like this elsewhere in our program:

int const i = 42;
int j = 13;
foo(&i);
foo(&j);
printf("i == %d, j == %d\n", i, j);

The compiler will likely optimize the generated code, so i remains a 42 after we call
foo(&i), but it will not optimize for j, even though foo() promised not to change what
its input points at. What foo() does is valid, and it should change what its argument
points to. You are allowed to change const values this way.

It is confusing, but it is the way it is. It would be easier if it was always illegal to modify
a const value. Still, there are many applications where we want to do so, where the const
value isn’t truly const, for example, because we change some meta-information but
conceptually have a const. When you declare a pointer to const, you ask the compiler
to help you with remembering that you shouldn’t change what it points to, but you are
allowed to—you just need to make your intent explicit through a type-cast.

When you define a variable you allocate the memory for it and you specify whether
it can change. If it is const, you shouldn’t expect it to change, and the compiler probably
won’t expect it either. If you do not define it as const, then you are allowed to change it,
even if you have a const pointer to it. You can cast the pointer and change the value. If
you call a function that promises not to change its input, the compiler doesn’t trust it, and
neither should you. Because const doesn’t actually mean constant, it means that you want
the type-checker to remind you to be explicit about your intent before you change the value.

If you declare a pointer to a constant integer, either as

const int *ip;

or

int const *ip;

Chapter 3 Pointers

57

you have not declared the pointer to be constant. It is the type that the pointer points at

that is constant—not the pointer. Here is the rule for const (and other qualifiers) and

why the second variant is easier to work with:

For any type T, T const is a constant of that type.

Understand “constant” in the context of what we just saw earlier. It might not be

constant, but it is something the compiler will yell at you for writing to unless you use an

explicit cast. If you also use the first variant for const declaration, you have a special case

because a const before the first type makes that type const. Stick with using the second

variant. If you do, you have the same rule for pointers:

For any type T, T * is a pointer to that type.

With these two rules, you can work out that

int const *icp;

is a pointer to type T (because it has the form T *) and that the type T is a constant type;

it has the form U const where the type U is int. So we have a pointer to a constant int.

When you apply these two rules, you will find it easier to read the type declaration from

the right and to the left. The * and const in the rules affect the type to the left of them,

and we apply the rules recursively—so read it backward.

If we want the pointer to be constant, so it always points to the same address, but we

want to be able to change what it points at, then we can work out the type declaration

from the rules as well. We want a constant, so write const to the right of the type we

are declaring. Now the type has the form T const. What do we want T to be? It should

be a pointer, so we update T to a pointer U *, and then our type is U * const. We have

reached the end of our declaration now if we want a constant pointer to int, because

then U must be int, and thus we declare

int i;

int * const cip = &i;

Chapter 3 Pointers

58

We must initialize the pointer here because it is constant, so we cannot point an

address at it later. Here, it points to the variable i, and it always will. We cannot give it

another address. But we can change i and *cip to our heart’s content.

The four combinations of const/non-const underlying type and const/non-const

pointers look like this:

int * i_p = 0;

int const * ic_p = 0;

int * const i_pc = 0;

int const * const ic_pc = 0;

and I have tried to illustrate the types in Figure 3-3 where white boxes mean a variable is

mutable and gray means that they are const.

You can change both i_p and what it points to because none of those are const.

For ic_p, you can change the pointer, but not what it points at. With i_pc, you cannot

change the pointer, but you can modify what it points at, and with ic_pc you can modify

neither of the two.

We have seen many times by now, and probably earlier in our lives, that we can

assign from a const variable to a non-const. Nothing can go wrong with that because

we only modify the memory of the non-const variable. The same is, obviously, also true

for pointers. You can assign a const pointer to a non-const pointer. Naturally, you can

also assign a non-const pointer to a non-const pointer, but there is nothing particularly

surprising in that. With pointers, though, we also have to consider what we point at. We

could make a rule that you can only assign between pointers to the exact same type, but

there is nothing wrong with letting a pointer, which promises not to change its pointed-

at value, look at a non-const address. It is not changing anything, so there is no reason to

restrict it from doing so. And indeed, we are allowed to assign a pointer to non-const to a

pointer to const.

Figure 3-3.  Constant data and constant pointers

Chapter 3 Pointers

59

In Figure 3-4, I have summarized these two rules in a graphical form. The squiggly

boxes mean any type and qualifier as long as the two are the same before and after the

assignment. Rule A) is the one we have used many times and rule B) is the same rule,

just for pointers. If two pointers point to the same type, then there are no differences

between pointer types and other variable types. We can assign a const value to a non-

const variable because it cannot change anything except the variable we assign to. The

new rule is in C) and says that we can add const-ness to the pointed-at type, but we are

not allowed to go the other way and remove const from what we point at. That rule, in

a more concise form, is shown in Figure 3-5. In the figure, it says “qualifier” because

the rule applies to all qualifiers and not just const. The section is about const because

we tend to use it more than the other qualifiers. Still, everything in this section about

specifying types and assigning between them also applies to, for example, volatile. You

can remove qualifiers from the pointer and add them to the type you point at, but not the

reverse.

The rules for declaring types and assigning between pointers are the same as we add

more levels of indirection, so I will not go on about it for much longer, but there is a point

I want to make so I will take us one more level up and add pointers to the four types we

have seen so far.

int ** i_p_p = 0;

int const ** ic_p_p = 0;

int * const * i_pc_p = 0;

int const * const * ic_pc_p = 0;

Figure 3-4.  Rules for const and pointers in assignments

Chapter 3 Pointers

60

I won’t include the corresponding const variables; they will tell us nothing except

that we cannot assign to them. In Figure 3-6, I have illustrated these four pointers as well,

including the two legal assignments between them. You can assign from the unqualified

int ** pointer to int * const * and from int const ** to int const * const *, but

not between any of the others.

Why? Because that is what the rules say. You can assign from T * to T const * (and

other qualifiers besides const), but not between T * and U * for different types T and U.

If we peel away the last pointer in the preceding types, we have the two non-const types

T = int * and U = int const *.

typedef int * T;

typedef int const * U;

Figure 3-5.  Adding and removing qualifiers for pointer assignment

Figure 3-6.  Assignments between pointers to pointers with and without const

Chapter 3 Pointers

61

T * i_p_p = 0;

U * ic_p_p = 0;

T const * i_pc_p = 0;

U const * ic_pc_p = 0;

We can assign from i_p_p to i_pc_p because they have type T * and T const *,

and we can assign from ic_p_p to ic_pc_p because they have type U * and U const *,

respectively.

You might now object that surely there shouldn’t be a problem with assigning from,

for example, i_p_p to ic_p_p, because you make a non-const value const, so you won’t

change anything you shouldn’t. You restrict what you can do, and that cannot cause

problems. The thing is that it can—because you can create a non-const alias to a const

object if you were allowed to do this. Say I have variables

int *p = 0;

int const ** q = 0;

int const i = 42;

and follow along in Figure 3-7. In the figure, boxes and arrows that are dashed do not

represent actual objects. We start with p and q as NULL pointers, so they do not point at

any existing objects. The dashed boxes are there to show their type and nothing more.

Actual data will be shown in fully drawn boxes.

I can take the address of p, it has type int **, and assign it to q. This is the

assignment that isn’t allowed, but we do it anyway (and in code, you can explicitly cast it,

so you can always do it, even if you shouldn’t).

q = (int const **)&p;

Now I have created an alias for p in *q. In the figure, boxes that touch are aliases;

they are the same object but represented as different boxes to indicate their types. The

pointer q points at the object p, so p and *q are the same objects, and unless we direct q

somewhere else, they remain so. This means that anything they might end up pointing at

later will be accessible through both of them.

Then we assign &i to *q:

*q = &i;

Chapter 3 Pointers

62

Both the address of i and *q have type int const *, so this is a perfectly valid

assignment. We expect to be able to assign one pointer type to another, so we are not

doing anything wrong when doing that.

However, it creates more aliases. Since q points to p and *q now points to i, all three

of *p, **q, and i refer to the same object. They differ in type; *p is not const, but the

other two are. But because *p is not const, we can change the value of the object through

it. The actual object is const; we declared that memory location to be int const, so if we

change *p, we enter undefined behavior.

You can try it out yourself with this program. The questionable part is the assignment

from &p to q, where the code needs an explicit cast to compile. When I run the program,

I get different values for i and *p in the last printf(), because the compiler has

optimized reading the const integer. What you get is up to your compiler. The behavior is

undefined.

#include <stdio.h>

int main(void)

{

 int *p = 0;

 int const **q = 0;

 int const i = 42;

 q = (int const **)&p;

 *q = &i;

 // Now I have an int alias to an int const!

 printf("&i == %p, *p == %p\n", (void *)&i, (void *)p);

 *p = 5; // DANGER: We are trying to change const int

 // This may or may not actually change i.

 // It is up to the C compiler

 printf("i == %d / %d\n", i, *p);

 return 0;

}

Chapter 3 Pointers

63

Figure 3-7.  Creating a non-const alias to a const object

Chapter 3 Pointers

64

What about the other types? Do I run into the same problem if I assign from int **

to int const * const? No, here I cannot do the same trick to create an invalid alias, but

that is because I consider the types in isolation. If we allow ourselves to add another level

of pointers, we are back in the same situation. Consider Figure 3-8. Here, we have an int

** pointer p, we assign its address to an int const * const ** pointer u, and when we

then assign the address of an int const * const object, r, into *q, we have created not

just one but two illegal aliases.

Figure 3-8.  Creating yet another illegal alias

Chapter 3 Pointers

65

Admittedly, here we are not assigning an int ** to an int const * const * when

we assign from &p to q. The types are int *** and int const * const **. We do not

create a problem if we allowed assignments from int ** to int const * const *, but

then we would have to disallow assignments for some cases with more levels of pointers.

In the examples, we have exploited that we can write &p into q and then an object

we shouldn’t modify into *q, but there can be several levels of references between the

two places where we write pointers to create an illegal alias. All it takes is that we have a

place where we can write p into a pointer structure that allows us to write another, more

restricted type, r, somewhere further down the chain. By “more restricted” I mean that r

has an immutable object in its chain of pointers that is allowed to be modified through p.

Figure 3-9 shows the general case of this.

If there is a non-const link in the type we assign from, to the left of a non-const link

in the type we assign to, then we can create an illegal alias this way. This is what the type-

checker prevents. If the first link in the first assignment is non-const for p but const for q,

we cannot smuggle in the extra assignment to make an illegal alias. That is why we can add

a const to the type we point at. If the type except for the const at the immediate level is the

same, then we cannot have alias issues either—if the type is the same, then what we can

modify with one alias we can also modify through another.

Figure 3-9.  General setup for smuggling in an illegal alias

Chapter 3 Pointers

66

The assignment rules are stricter than they need to be. They prevent entirely safe

assignments, like int ** to int const * const, where you cannot smuggle in any

false alias—if you tried to put a const object into a chain with the int ** alias, you

would have to go through the int const * const type, which doesn’t allow you any

assignments. You could allow such assignments but at the cost of complicating the type

rules. Or make a special case for links of pointers that are all const. C takes the simpler

approach and allows you to add const to the object you point to, but otherwise the type

must be the same.

�Restricted Pointers
When the compiler sees a const variable (but not a pointer to const), it knows that its

value doesn’t change, so it can optimize the code it generates to exploit this. If it reads

the value of a const variable, it can generate code that remembers the constant value

instead of fetching it from a variable. Getting a constant is orders of magnitude faster

than fetching a value from cache or main memory, so there is much to gain here. The

restrict keyword provides a similar optimization opportunity. It is a qualifier to a

pointer type (so like with const, you need to put it after the * to modify the pointer and

not the underlying type). It tells the compiler that this pointer is not an alias of anything

else; the memory it points at is only referenced through the pointer itself. Writing to

other pointers will not change the value it points at, and writing through the pointer will

not affect what other pointers read.

Before the compiler generates code, it will analyze it to find the optimal machine

code. If it can work out where you get data from, and maybe remember it for later instead

of fetching it from memory every time you use it, it can generate faster code. The promise

you make when you write restrict helps it eliminate the case where it would otherwise

have to assume that a value you access could have chanced since it fetched data from

it last and force it to fetch the data once more. Beware, though, that current compilers

are not really good at warning you if you break that promise! If you actually modify data

through a different pointer, the optimized code will be incorrect.

Chapter 3 Pointers

67

The following program illustrates the difference:

#include <stdio.h>

void abc(int *a, int *b, int *c)

{

 *a += *c;

 *b += *c;

}

void abc_restrict(int *a, int *b, int * restrict c)

{

 *a += *c;

 *b += *c;

}

int main(void)

{

 int x, y;

 x = y = 13;

 // No problem here. We haven't made any restrict

 // promises

 abc(&x, &y, &x);

 printf("%d %d\n", x, y);

 // We break the promise here by passing

 // using &a both as argument a and c in

 // in the function

 x = y = 13;

 abc_restrict(&x, &y, &x);

 printf("%d %d\n", x, y);

 return 0;

}

Chapter 3 Pointers

68

In the function abc(), we add the value that c points at to the integers that a and b

point to, and we dereference c twice to do this. We call abc() as abc(&x,&y,&x), so c

points to the same integer as x. Consequently, when we update *a, we change the value

at *c before we add it to *b.

With abc_restrict(), we have told the compiler that *c doesn’t change (unless we

write to *c, which we don’t). It is, therefore, free to remember *c from the first access,

so when it needs *c to add it to *b, it can use the saved value. In this code, I lied to the

compiler when I told it that *c wouldn’t change through other pointers, because both

a and c point at the same integer, x, but the compiler is gullible and believed me, and

it might have optimized the code accordingly. It is usually not a good idea to lie to your

compiler. You will be the one to suffer; it really couldn’t care less.

When I run the code without compiler optimization, the result of both function calls

is the same:

26 39

26 39

If I turn on optimization, however, I get

26 39

26 26

In the second function, the compiler didn’t fetch the value at *c a second time to add

it to *b. I have told it that it doesn’t change, and it believed me.

The optimization that the compiler can do with restrict is similar to what it can do

with const, but you are allowed to change what c points at. The compiler will change

the value there, and it will recognize that the value has changed if you dereference the

pointer again. The optimization is only there to tell the compiler that the value doesn’t

change through some other pointer. Then the code that the compiler generates can

remember values instead of fetching them again each time you look at the memory at

the other end of a restricted pointer.

Chapter 3 Pointers

69
© Thomas Mailund 2021
T. Mailund, Pointers in C Programming, https://doi.org/10.1007/978-1-4842-6927-5_4

CHAPTER 4

Pointers and Types
If pointers simply hold memory addresses, why do they have different types? Isn’t a

memory address just a memory address? Usually, yes, an address is simply an address

on a modern architecture, but the language standard doesn’t guarantee it. Pointers to

different types are allowed to have different representations if the underlying hardware

requires it (with a few rules for how you can convert between them), and you should be

careful with assuming that they hold the same kinds of addresses.

Even if a pointer merely holds an address, and all addresses are equal, there are still

at least three reasons that we want them to have types. First is type-checking. In statically

typed languages such as C, the type-checker seeks to eliminate programming errors by

analyzing your program and checking if all variables are used in a way consistent with

their intended purpose, as specified by their type. Many operations are nonsensical on

most types. What does it mean to turn a floating-point number into uppercase? Or divide

a string by four? If you attempted to do it in a running program, it would either crash or

completely garble up its computation. The type-checker is there to prevent such errors.

It is not perfect at catching all errors, which is provably impossible for a program to do,

but it identifies many errors that want to catch as early as possible—before your program

is running in any critical setting.

Second, types do more than check that you use objects as you intended. They specify

how bit patterns and chunks of computer memory should be interpreted. A 64-bit

integer and a 64-bit floating-point number are both 64-bit binary words, but we interpret

the bit patterns differently. We also interpret a 64-bit and a 32-bit integer differently,

when we look at the memory location where we find it. If we are looking for a 64-bit

(or 8-byte) integer, we need to look at 8 bytes to get the number; if we are looking at a

32-bit (4-byte) integer, we only need to look at the next 4 bytes at the address. When you

dereference a pointer, you want C to interpret what it finds at the address the correct

way. The pointer type ensures this. If we only worked with (untyped) addresses, we

would need to explicitly specify the interpretation we want of what we point at, each time

we dereference.

https://doi.org/10.1007/978-1-4842-6927-5_4#DOI

70

�Pointers, Types, and Data Interpretation
In the following, I will do some things that you shouldn’t ever do. I do it to illustrate

a point, but I enter a territory that the C standard says the behavior is undefined. The

standard uses the term “undefined behavior” frequently. It means that you are allowed

to do it, but you won’t know what will happen in general. It is not laziness that leaves

things undefined; instead, it is giving compilers freedom to optimize their code to the

hardware the code will run on. Suppose you specify the behavior of a program too

tightly. In that case, the compiler has to generate extra code to adjust the behavior

when it deviates from what the underlying hardware would do. Leaving it undefined

frees the compiler to generate optimal code for any platform. The side effect is, of

course, that you cannot write portable code if you rely on the behavior that the standard

leaves undefined. The following example is not portable to all platforms, because I cast

between pointer types that I might not be allowed to. It will probably work for you as

well, as most desktop architectures will allow it, but if it doesn’t work, read the example

and move on to the next section where I explain why that might be.

But back to the example. If pointers are just addresses, we can cast one pointer type

to another and make them point to the same address. If we then dereference them, they

will look at the same data—it is the data at the same address, after all—but they will

interpret the data differently. Consider this program:

#include <stdio.h>

int main(void)

{

 printf("sizes: double = %zu, long = %zu, int = %zu, char = %zu\n",

 sizeof(double), sizeof(long), sizeof(int), sizeof(char));

 double d;

 double *dp = &d;

 long *lp = (long *)&d;

 int *ip = (int *)&d;

 char *cp = (char *)&d;

 printf("dp == %p, lp = %p\nip == %p, cp == %p\n\n", dp, lp, ip, cp);

 d = 42.0;

 printf("*dp == %.20f, *lp == %ld,\n*ip == %d, *cp == %d\n",

 *dp, *lp, *ip, *cp);

Chapter 4 Pointers and Types

71

 *ip = 4200;

 printf("*dp == %.20f, *lp == %ld,\n*ip == %d, *cp == %d\n",

 *dp, *lp, *ip, *cp);

 *cp = 42;

 printf("*dp == %.20f, *lp == %ld,\n*ip == %d, *cp == %d\n",

 *dp, *lp, *ip, *cp);

 return 0;

}

If you run it, you might get this output:

sizes: double = 8, long = 8, int = 4, char = 1

dp == 0x7ffee0d88f0, lp == 0x7ffee0d88f0,

ip == 0x7ffee0d88f0, cp == 0x7ffee0d88f0

*dp == 42.00000000000000000000, *lp == 4631107791820423168,

*ip == 0, *cp == 0

*dp == 42.00000000002984279490, *lp == 4631107791820427368,

*ip == 4200, *cp == 104

*dp == 42.00000000002940225841, *lp == 4631107791820427306,

*ip == 4138, *cp == 42

It is unlikely that you get the same addresses; you might not get the exact same sizes,

but if you are using an x86-64 architecture, as most personal computers do these days,

then the dereferenced values will be the same.

The four pointers all see the same address (Figure 4-1), and dp and lp know they

should look at 8 bytes (their sizeof is 8 sizeof(char) and char on this architecture is a

byte). The pointer ip should look at 4 and cp at 1 byte. Thus, it should not surprise that

we get different values for ip and cp than we do for the others. That lp and dp interpret

what they point at differently is a consequence of how we represent floating-point

numbers. I will not go into it in this book but suffice to say that the bits in those 8 bytes

are interpreted differently, and that is reflected in the output.

When we assign 42.0 to the double, we set the bit pattern in its 8 bytes such that we

have the floating-point representation of 42. This looks very different if we interpret

the same bits as a long integer, as we can see. The integer and character pointers see 0,

which we can conclude means that the low 4 bytes in the double are all 0 bits.

Chapter 4 Pointers and Types

72

When we assign to *ip, we change the 4 lower bytes. We go through an integer

pointer, so C knows (even though we lied to it) that it is looking at a memory object of

4 bytes, and it overwrites the existing data with the bits that represent the integer 4200.

It changes both the double and the long—it changes half their bits, after all—but it is

the lower bits, and we do not see a large change. The change is there, though. We also

change the char at the first byte because the lower byte in the 4-byte 4200 is no longer 0.

We can get the lower byte of a number by taking the division remainder of 256 (think of

bytes as base 256, i.e., 2 to the power of 8), and that is the 104 we see. When we assign 42

to *cp, we change the char to 42, and we replace the 104 in the integer with 42.

The type we give a pointer tells C how it should handle dereferenced values, that is,

how it should treat the memory at the address we point at and how many memory cells

starting at that address are part of the object. Since C will look beyond the first address

whenever sizeof is greater than one, you also have to be careful here. If you cast the

address of a small object to a pointer of a larger type, you can quickly get into trouble.

You can always cast integer values to a larger type, for example:

int i = 42;

long l = (long)i;

Figure 4-1.  The same memory, interpreted as a char, an int, and a double

Chapter 4 Pointers and Types

73

(you do not even need the type-cast here). This is safe because C already has memory set

aside for the variables, and you are merely copying bits. This, however, is not safe:

int i = 42;

long *lp = (long *)&i;

If you dereference lp, C will pick 8 bytes from the memory address where i sits, but

there are only four allocated for the integer (on my machine, at least). What happens is

anyone’s guess, but it probably will be bad.

If you want to put a char, an int, and a double at the same position, then you should

use a union. That is what unions are for, after all. You can achieve the same thing with a

union, and that is the safe way to do it. You can even get pointers of the different types to

the union’s address.

The point of the example is not that you cannot put different objects in the same

memory, you can, but you need type information to treat the size and the data in the

memory correctly. If pointers didn’t have types, we would need to provide the type in

some other way.

The third reason we want to give pointers types might be less apparent but has to

do with how we handle arrays of objects (see Chapter 5) and array-like objects, that is,

memory where we have laid out objects of the same type contiguously. The next object’s

address is exactly one past previous object’s last address. Here, the types tell us how far

apart two consecutive objects are—objects of type T are sizeof(T) apart—and because

the pointers know how large the objects they point at are, we can use so-called pointer

arithmetic when we work with arrays, as we shall see in Chapter 5. Here, I will give you a

taste of how it works.

In the following program, I have defined a to be a sequence of five integers, one to

five. This gives me 5 * sizeof(int) consecutive memory addresses. The first integer

sits at index 0, the second at offset sizeof(int), and number i sits at offset (i - 1) *

sizeof(int). The address just past the array is 5 * sizeof(int).

#include <stdio.h>

int main(void)

{

 int a[] = { 1, 2, 3, 4, 5 };

 int n = sizeof a / sizeof *a;

Chapter 4 Pointers and Types

74

 // get a pointer to the beginning of a

 int *ip = a;

 char *cp = (char *)a;

 for (int i = 0; i < n; i++) {

 printf("a[%d] sits at %p / %p / %p\n",

 i, (void *)&a[i], (void *)(ip + i),

 (void *)(cp + i * sizeof *a));

 }

 return 0;

}

The line

int n = sizeof a / sizeof *a;

is an idiom for getting the correct number of elements in an array. The first sizeof gives

us the size of the array, and the second provides us with the size of one element, what

the array “points to,” so dividing the first by the second gives us the number of elements.

Here, of course, we know that it is five, but we might change the size later and forget to

update n. We don’t use sizeof(int) for the second number for a similar reason. We

don’t want to count the wrong number of elements if we change the type of the array

later.

When running the program, I got

a[0] sits at 0x7ffeeaa468f0 / 0x7ffeeaa468f0 / 0x7ffeeaa468f0

a[1] sits at 0x7ffeeaa468f4 / 0x7ffeeaa468f4 / 0x7ffeeaa468f4

a[2] sits at 0x7ffeeaa468f8 / 0x7ffeeaa468f8 / 0x7ffeeaa468f8

a[3] sits at 0x7ffeeaa468fc / 0x7ffeeaa468fc / 0x7ffeeaa468fc

a[4] sits at 0x7ffeeaa46900 / 0x7ffeeaa46900 / 0x7ffeeaa46900

but you can check for yourself. As you can see, the addresses match. Notice that to

get to index i from the integer pointer, we use ip + i. Because of the type, we know that

we need to move in jumps of sizeof(int). With the char pointer, we have to explicitly

include the size; a character pointer jumps in quantities of the size of char which is

always 1. This might look like a fringe case where types are important, but pointer

arithmetic is used throughout C programs.

Chapter 4 Pointers and Types

75

Generally, you do not want to index into the middle of an object, because you do not

know how C chooses to represent objects. But it can have its uses. For example, we might

want to pick out the individual bytes of an integer. In Chapter 6, we see how we can

sort integers in linear time if we do this, although there we do so without pointing into

the integers. Here is a program that runs through the array from before and prints the

individual bytes in the elements:

#include <stdio.h>

int main(void)

{

 int a[] = { 1, 2, 3, 4, 5 };

 int n = sizeof a / sizeof *a;

 for (int i = 0; i < n; i++) {

 printf("%d = [", a[i]);

 char *cp = (char *)(a + i);

 for (int j = 0; j < sizeof *a; j++) {

 printf(" %d ", cp[j]);

 }

 printf("]\n");

 }

 return 0;

}

We iterate through the integers, and for each integer, we set a char pointer to point

to the address of the first byte in that integer. When we write a + i, we use a as a pointer,

and we get the address of a[i] (with no ampersand needed because we already get

the address from a + i). Now we go through the number of bytes in an integer. If cp

is a char pointer, then cp + j is the char that is j addresses higher than it. We can

dereference it with *(cp + j), but cp[j] is syntactic sugar for doing exactly this. The

types matter for the correct indexing. For the array, a + i is i integers past a, but cp +

j is j characters past cp. The type of the pointer/array determines what the step size is

when we add a number to them.

Chapter 4 Pointers and Types

76

Although I will tell you in the next section that you should be careful with casting

from one pointer type to another, this program is actually standard compliant. You can

always cast to a character pointer and use it to run through the bytes in an allocated

object.

When I run the program, I get the output:

1 = [1 0 0 0]

2 = [2 0 0 0]

3 = [3 0 0 0]

4 = [4 0 0 0]

5 = [5 0 0 0]

There are 4 bytes per int (because sizeof(int) is 4 with the compiler I use), and the

numbers 0 to 5 sit in the first byte of the integers, with the remaining 3 bytes set to 0. This

will not always be the case. C does not guarantee how integers are represented; that is

defined by your hardware architecture. In principle, any kind of bit pattern can be used,

but in practice, there are two integer representations: big-endian and little-endian. They

differ in which direction the most to least significant bytes sit. Consider a 32-bit integer;

see Figure 4-2. Do we put the first (least significant) 8 bits into the first byte in memory

and then the rest in the following bytes? Or do we put the eight most significant bits in

the first byte? Different architectures (and various file formats and network protocols)

make different choices, but if you use an x86-64 chip, like me, then you will have a little-

endian architecture, and you will get the same results as I got earlier.

Chapter 4 Pointers and Types

77

You can try this program to check if your integers are one or the other. It computes an

integer from its bytes by considering them as base 256 numbers (base 256 because that is

the number of digits we have with 8 bits). You already know how the pointer arithmetic

for the cp pointer works, and the only difference between the two functions is the order

in which we go through the bytes.

#include <stdio.h>

int little_endianess(int i)

{

 char *cp = (char *)&i;

 int result = 0, coef = 1;

 for (int j = 0; j < sizeof i; j++) {

 result += coef * cp[j];

 coef *= 256;

 }

Figure 4-2.  Integer endianness

Chapter 4 Pointers and Types

78

 return result;

}

int big_endianess(int i)

{

 char *cp = (char *)&i;

 int result = 0, coef = 1;

 for (int j = sizeof i - 1; j >= 0; j--) {

 result += coef * cp[j];

 coef *= 256;

 }

 return result;

}

int main(void)

{

 for (int i = 0; i < 10; i++) {

 printf("%d: little = %d, big = %d\n",

 i, little_endianess(i), big_endianess(i));

 }

 return 0;

}

In the interest of honesty, I must admit that the program only works for non-negative

integers, but the failure has nothing to do with endianness. The two-complement

representation of negative numbers, used on practically all hardware, doesn’t allow us

to consider a 32-bit integer as a four-digit base 256 integer. Looking into the guts of an

object only takes us so far, and while we can examine the individual bytes in an integer

using a char pointer, there are limits to what we can do with it.

The way our programs interpret data, stored in its raw bit format, depends on the

type we give our objects, and the same goes for pointers. At their heart, they are nothing

but addresses into the computer’s memory, but the type we give them tells the program

how to interpret what it finds at the address they store (and what we mean when we want

an address a specific offset from the address we point to).

Chapter 4 Pointers and Types

79

Although I did it myself in this section, I don’t want you to cast pointers of one type

into another. Do as I say, and not as I do. Casting a pointer of one type to a pointer of

another, or addressing the same memory as different types, as I have done, was for

educational purposes. If you do it, you easily enter undefined behavior territory. In the

next section, I will explain some of the main reasons for this.

�Casting Between Pointers of Different Types
A pointer holds an address, but pointers of different types hold pointers to different

types—obviously. Does that mean that they are represented the same way, and the type

information is only used by the compiler to check that you use them correctly? Often,

yes, but this is not guaranteed by the C standard.

�Void Pointers
What you are guaranteed is that you can assign a pointer to an object of any type to a

void pointer (see later), and if you cast it back, you get the original pointer.

int *ip = 0x12345;

void *p = ip;

int *ip2 = p;

assert(ip == ip2);

A void pointer is a generic pointer with no underlying type—void is an incomplete

type that you cannot otherwise use. You can assign to any data pointer from a void

pointer without type-casts. This is an easy way to slip past type-checking, so be careful.

These rules only apply to pointers to data objects. The C standard does not require

that pointers to functions and pointers to data are compatible, so assigning a function

pointer to a void pointer is not necessarily supported. You can convert between function

pointers of different types, though. In the POSIX standard, you can store function

pointers in void *, but the C standard leaves the behavior undefined. We return to

function pointers in Chapter 13.

Chapter 4 Pointers and Types

80

�Qualified Types
If you have pointers to the same underlying type, for example, int, but one is qualified,1

it could be volatile int, and the other is not, then you can assign the nonqualified to

the qualified and get the same representation.

int i;

int *ip = &i;

volatile int *ip2 = ip;

assert(ip == ip2);

You don’t need an explicit cast to add a qualifier, but you do need one to remove it if

you want to get back to the original type.

You can cast away the const qualifier. This is legal, and you get a pointer to the same

object. Be careful, though, because if the object you point to is const, then modifying it

invokes undefined behavior.

int i = 42;

int const *ip = &i; // Adding qualified, fine

int *ip2 = (int *)ip; // Removing it again, fine

*ip2 = 13; // Changing i, no problem, i isn't const

int const i2 = 13;

ip2 = (int *)&i2; // Removing qualifier, but ok

*ip2 = 42; // UNDEFINED BEHAVIOUR, i2 is const

�Unions
You are allowed to cast a union to the types that its members have:

union U {
 int i;

 double d;

};

union U u;
int *ip = (int *)&u;

double *dp = (double *)&u;

1�The qualifiers are const, restrict, and volatile and combinations thereof.

Chapter 4 Pointers and Types

81

and you will get the correct pointer if you cast them back again.

assert((union U *)ip == &u);
assert((union U *)dp == &u);

You are not guaranteed that you can safely cast in the other direction, though, for

example, cast an int pointer to a union pointer, just because the union has an int

member.

int i;

union U *up = (union U *)&i;

You do not have the guarantee that you can do this, only that if the original address

holds the union, then it will be correct. A union U pointer might not be allowed to

point to an arbitrary integer. There could be alignment issues, for one thing, and even

if not, if you use up to access the double member, the integer object at the address is

likely too small to hold the data you write into it. For me, with sizeof(int) == 4 and

sizeof(double) == 8, something very bad might happen if I tried.

�Struct Pointers
You can assign a pointer to a struct of any type to a pointer to a struct of any type.

struct S *s = ...;
struct T *t = (struct T *)s;
assert((struct S *)t == s);

If you cast a pointer to one type of structure to a pointer to another kind of structure,

and back again, you get the original pointer. This does not mean that it is safe to

dereference such a pointer, of course, because the structures can look very different—but

one struct pointer can hold the value that another struct pointer can hold.

�Character Pointers
You can always cast any pointer to an object to a character type, for example, char or

unsigned char, and you get a pointer to the first address of where that object sits.

int i;

char *x = (char *)&i;

assert((char *)&i == x);

Chapter 4 Pointers and Types

82

The following sizeof(T) addresses for the type T object we look at, we can access the

data, and we can modify the data if the object we are pointing at is mutable, that is, not

const.

�Arbitrary Types
You are also guaranteed that you can cast from a T * to a U * for any types T and U, but

here you are not guaranteed that you get the same pointer if you go back again. That

depends on the alignment of the referenced type, the type of what you point to. If the

types have the same alignment, then you are guaranteed that you get the same object

back, but otherwise the behavior is undefined.

int i = 42;

int *ip = &i;

double *dp = (double *)ip;

int *ip2 = (int *)dp;

// Maybe ip == ip2, or maybe not.

This generally means that if you cast to a type that has stricter alignment constraints,

like from an int with alignment 4 on my computer to double with alignment 8, then

the behavior is undefined. I could get away with casting in the other direction, but

when we write code, we do not know what the alignment constraints will be for other

architectures, so this is dangerous to make assumptions about.

Don’t cast between arbitrary types. You have no idea about what will happen,

the standard gives you no guarantees, and in any case, it might be meaningless to

dereference a pointer you got this way. Because what happens if you dereference

pointers after you have converted them? You cannot dereference a void pointer, so we

don’t need to worry about that. You can safely dereference a pointer to an object of the

pointer’s underlying type, even with other qualifiers, but what happens might involve

undefined behavior. For example, changing a const object is undefined.

If you cast between some arbitrary types, and their alignment matches so this is a

well-defined operation, dereferencing them can still go arbitrarily wrong. We have two

aliases to the same object, but with different types, and while there are a few exceptions,

this generally involves undefined behavior. This means that the compiler is free to do

what it wants with that code. Obviously, if you have an object of one size, and write to

it through a pointer to a larger type, you will write outside of the bounds of its memory.

Your program might crash, or most likely you will overwrite other variables. That is an

Chapter 4 Pointers and Types

83

obvious problem. But you are not out of the woods if you write to a large object through

a smaller type. The bit patterns used to represent different values mean that writing

the smaller object into the larger doesn’t necessarily match what you want. A float is

typically smaller than a double, and it is always valid to write

float f = 1.34;

double d = f;

but go through pointers and you can get into trouble:

double d;

float *f = &d;

*f = 1.34;

We write the value 1.34 to the address *f as a float. What that looks like to a double is

up to the compiler (and the computer architecture, of course).

If you aim a pointer of the wrong type at an object, you have an invalid alias, and the

C standard doesn’t give you any guarantees about what happens. It does, however, give

the compiler some freedom to optimize. There is a rule, called the strict alias rule, that

says that whatever pointers of different types point at, it is different objects. Turn on your

compiler’s optimization, and it will exploit this.

Consider this program:

#include <stdio.h>

int f(int *i, long *l)

{

 *i = -1;

 *l = 0;

 return *i;
}

int main(void)

{

 long x;

 int i = f((int *)&x, &x);

 printf("%ld %d\n", x, i);

 return 0;

}

Chapter 4 Pointers and Types

84

In f(), we have a pointer to an int and to a long. We write -1 to the integer, which

sets all its bits to 1 in the two-complement representation. Then we write 0 to the long,

which sets all its bits to 0 (for all integer representations that I have ever heard about).

In main(), we call f() with two pointers to the same object. So we would expect that *i

= -1 wrote 1 bit in some of the bits in the long object x. With the compiler I am using,

an int is half the size of a long, so it would set the first half of the bits to 1 and leave the

rest the way they were. Not that it matters, because we then write zero bits into the entire

object. Finally, we return the integer that i points to. If we have just set the entire x to

zeros, it should point to an integer where all the bits are zero as well, so we expect that

f() returns zero. If I compile the program without optimization, that is indeed what I

see. If I turn optimization on, however, f() returns -1. Why?

The strict alias rule says that i and l cannot point to the same object, because they

do not have compatible types. So when the compiler works out what to return from f(),

it can see that we just assigned -1 to *i, and the rule tells it that the assignment to *l

cannot have changed that, so it concludes that it can return -1 and that it does not need

to fetch *i once more from memory. We lied to the compiler when we pointed an int *

at a long, and we shouldn’t have done that.

The general rule is that you should never alias objects of different types—you might

be able to store the pointer to one type in another, but you shouldn’t use the object you

point to then. The actual rules in the language standard are slightly more complex, but if

you do not do this, then you are safe.

With a char pointer, the strict aliasing rule does not apply. Character pointers are

special in that they are always allowed to point to any other object, and if the object is

mutable, we are allowed to modify the object we point to. In the following program, j

gets the value 0 regardless of optimization:

#include <stdio.h>

int f(int *i, long *l)

{

 *i = -1;

 *l = 0;

 return *i;

}

int g(char *c, long *l)

Chapter 4 Pointers and Types

85

{

 *c = -1;

 *l = 0;

 return *c;

}

int main(void)

{

 long x;

 int i = f((int *)&x, &x);

 int j = g((char *)&x, &x);

 printf("%ld %d %d\n", x, i, j);

 return 0;

}

�Void Pointers
There are cases where we want pointers to “something,” where “something” means that

we do not care (right now) what it is. The type you use for such pointers is void. If you

declare a void pointer, you can point it at anything at all.

int i;

char c;

void *p = &i;

p = &c;

Here, we point p at an integer and then at a char, and we do so without casting the

type. That is acceptable because a void pointer just holds an address. We cannot do

much with void pointers. If you dereference them, you get the type void, which isn’t a

type as such and C will not interpret it in any way. The only thing you can do with a void

pointer is to store an address. That sounds pretty useless, but it is how C can implement

generic functionality, that is, functionality that works for more than one type.

Chapter 4 Pointers and Types

86

The qsort() function from the standard library is an example of a generic function.

You can use it to sort arrays of any type that you can define an order on—integers,

strings, floating points—anything at all that can be ordered. It can sort anything because

it is oblivious to the type of the objects it sorts. For qsort(), the data is just a chunk of

memory. It knows how many data elements are in the chunk, and it knows how large

they are (so it knows how many addresses go between one element and the next), but

that is all it knows. It is up to the caller of the function to make sense of the data; you do

this by providing the call with a function for comparing elements.

When qsort() sorts the element, and it wants to know if one element is larger than

another, all it has is the addresses where the elements are found in memory, referenced

by void pointers. It will call the comparison function with these, and the comparison

function must then (1) assign the void const * pointers into pointers of the correct

type, so it can use them for something, and (2) compare the elements. The function

should return a negative integer if the first element is smaller than the second, zero if

the two elements are equal, and a positive number if the second element is larger than

the first. If you want to sort an array of integers, for example, you must convert the void

pointers into int pointers and compare what they point at. That comparison could be

subtracting the second element from the first; it will be negative if the second element is

larger, positive if it is smaller, and zero if the two values are equal, exactly as it should be.

The following function does this; see also Figure 4-3.

int int_compare(void const *x, void const *y)

{

 // Get the objects, and interpret them as integers

 int const *a = x;

 int const *b = y;

 return *a - *b;

}

Functions such as qsort() can operate on any data by delegating the part of the

algorithm that requires data knowledge to a parameter function. We will revisit using

void pointers as generic data and using functions as arguments—function pointers,

as it turns out—several places in the book. For now, I will leave you with the following

program that shows how you can use qsort() to sort both integers and strings, by

providing the correct comparison function:

Chapter 4 Pointers and Types

87

#include <stdio.h>

#include <string.h>

int int_compare(void const *x, void const *y)

{

 // Get the objects, and interpret them as integers

 int const *a = x;

 int const *b = y;

 return *a - *b;

}

int string_compare(void const *x, void const *y)

{

 // Get the objects and interpet them as strings

 char * const *a = x;

 char * const *b = y;

 return strcmp(*a, *b);

}

Figure 4-3.  Comparison in qsort()

Chapter 4 Pointers and Types

88

int main(void)

{

 int int_array[] = { 10, 5, 30, 15, 20, 30 };

 int int_array_length =

 sizeof int_array / sizeof *int_array;

 qsort(int_array, int_array_length,

 sizeof *int_array, int_compare);
 printf("int_array = ");

 for (int i = 0; i < int_array_length; i++) {
 printf("%d, ", int_array[i]);

 }

 printf("\n");

 char *string_array[] = { "foo", "bar", "baz" };

 int string_array_length =

 sizeof string_array / sizeof *string_array;

 qsort(string_array, string_array_length,

 sizeof *string_array, string_compare);
 printf("string_array = ");

 for (int i = 0; i < string_array_length; i++) {
 printf("%s, ", string_array[i]);

 }

 printf("\n");

 return 0;
}

For the string_compare() function, remember that we get the address of the

elements in the array. The array consists of strings, that is, char *, but that is not what

the function is called with. That is the values in the array. The function is called with

pointers to the values, so pointers to strings or pointers to pointers to char, that is, char

**. And because it is a const in the parameter, we need to get that added somewhere as

well. The easiest way to work out the type, and get const at the right place, I think is this:

In the algorithm, qsort() thinks that we have an array of void—conceptually at least,

since it is impossible to have anything of void. We know that we have an array of char *,

so we should get the correct type by substituting void for char * everywhere. So void

const *, with void -> char *, becomes char * const *.

Chapter 4 Pointers and Types

89

It is no different from the integer case, where we have an array of int that qsort()

thinks is an array of void, so we get the type by void -> int which gives us void const

* to int const *. Still, I have often seen students cast the void pointers to char pointers

(or char const *) perhaps because they reason that they are both pointers. With the

pointer to pointer, you also get three places to put the const, char const ** (wrong),

char * const * (correct), char ** const (wrong). If you always substitute void with

the correct type, you will get the correct pointer type.

The arguments to qsort(), besides the comparison function, are the array, which

it obviously needs, the number of elements—it needs to know the length of the array—

and the size of the data objects. It needs to know how large objects are to know where

individual objects are. It needs to know how many bytes two objects are apart, and that is

a multiple of the object size in bytes. We return to indexing into arrays in Chapter 5.

It is not necessary to use an explicit cast to convert void pointers from and to other

types.

int i = 42;

int *ip = &i;

void *vp = ip;

char *cp = vp;

You do not need an explicit cast to convert to and from void and data pointers. This

is potentially dangerous since we are implicitly casting between pointer types. However,

in many cases, it is convenient that you do not need to cast void pointers because we use

them with generic functions. We do not need to cast the preceding input to qsort() to

(void *). Similarly, when we have functions that return void pointers—such as those

we will use in Chapter 2—we do not need casts either. Beware of the dangerous, though.

The preceding example circumvents the type-checker and casts an integer pointer to a

character pointer without errors or warnings. It is easy to see that this is happening in

simple code like this, but it is obviously more challenging in more complicated code. If

we want to change the type of a pointer, we should be explicit about it. It should never be

by accident. Do be careful when going to and from void pointers.

Chapter 4 Pointers and Types

91
© Thomas Mailund 2021
T. Mailund, Pointers in C Programming, https://doi.org/10.1007/978-1-4842-6927-5_5

CHAPTER 5

Arrays
Arrays are collections of objects of the same type, laid out in memory as a sequence of

contiguous objects. There is a close relationship between arrays and pointers to the first

element in an array; you can use an array as if it is a pointer to its first element, and it

degrades to that type automatically if you use it that way. If you pass arrays as arguments

to functions, they are always implicitly passed by reference, as a pointer to the first

element. They are still different types, however. You cannot assign to an array, so in that

way arrays resemble const pointers, and the size of an array is the total size of all the

objects it contains, where the size of a pointer to the first element is just the size of the

pointer. Still, as we shall see, when we work with arrays, we rarely distinguish between

having a pointer and an array.

You define an array of type T with the syntax T array[], in some variant of the

following examples for integers:

int a1[5];

int a2[5] = { 1, 2, 3 }; // only init first three

int a3[] = { 1, 2, 3, 4, 5 };

The first array contains five integers, but we have not initialized them—they can have

any value whatsoever at this point. The second also contains five integers, but we have

defined the first three of them. After declaring the integer, you can specify the array’s

values afterward in curly braces. You do not have to set all of them—here, we only define

the first three of five—but it is an error to provide more values than you say that the array

contains. In the last case, we do not specify how many values the array should hold, but

we provide initial values. When we do this, the array will hold the values we provide, and

the size will match the number of values exactly.

https://doi.org/10.1007/978-1-4842-6927-5_5#DOI

92

It might also be possible to declare an array whose length depends on a variable,

such as

int n = strlen(s);

char buffer[n + 1];

The buffer is allocated on the function call stack when we write buffer[n + 1], and

it is a so-called variable length array because it depends on a runtime variable. These

were introduced in the C99 standard, but in the C11 standard, they turned optional

because memory allocation problems on the stack are practically impossible to catch by

the programmer, and variable length arrays were judged to be a security issue as well. It

is likely that your compiler still supports them, but if not, you would need to allocate the

buffer on the heap, as we will explore in Chapter 9. I will use variable length arrays until

we get to that chapter because we haven’t gotten to dynamic allocation yet, but if the

code doesn’t compile for you, add large enough constants for their length until you read

the next chapter.

C knows the size of an array because it knows the size of the underlying type and how

many elements the array holds, so sizeof() will give you the number of bytes the array

takes up in memory. This size is the number of elements times the size of the underlying

type, so an int array of length 5

int A[5]; has sizeof A == 5 * sizeof(int).

If you take the value of an array, you get the address of the first element in the array.

Thus, we get a pointer to the beginning of the array if we write something like int *ap =

array. If you take the address of the array, you get a pointer to the array, of course, but on

all compilers I know, this is the same address. The value of an array equals the address

of its first values (and we will see why later in the chapter). The address of the array is a

different type, but practically guaranteed to be the same address as the array’s value.

There is a close correspondence between pointers and arrays, and in any expression,

you can use an array as if it was a pointer to the underlying type. Thus, we do not need

a cast to assign an array to a pointer of the underlying type; we are free to pretend that

the array is such a pointer. They are not the same type, however. The sizeof() an array

is not the size of a pointer to its elements, you cannot assign to an array, and the address

of an array is a pointer to an array and not a pointer to a pointer of the underlying array.

If ip is an integer pointer, &ip has type int **. If array is an integer array, &array is a

Chapter 5 Arrays

93

pointer to an array, and the two are different and incompatible types. That being said,

in many places, we use pointers and arrays interchangeably, and there are places that

the C standard will always implicitly translate an array into a pointer. This happens, for

example, every time you use an array as a function argument, as we shall see in the next

section.

Consider this program:

#include <stdio.h>

#include <assert.h>

int main(void)

{

 int array[] = { 1, 2, 3, 4, 5 };

 int *ap = array;

 printf("sizeof array == %zu, sizeof ap == %zu\n",

 sizeof array, sizeof ap);

 printf("%p %p %p %p\n", array, &array, ap, &ap);

 int n = sizeof array / sizeof *array;

 for (int i = 0; i < n; i++) {

 assert(array[i] == ap[i]);

 assert(array + i == ap + i);

 assert(*(array + i) == *(ap + i));

 }

 return 0;

}

We define an array of integers of length 5, and we point an integer pointer at it,

which means that it points at the first integer in the array. The size of the array will be

5 * sizeof(int) because that is how many bytes it takes up in memory. The size of the

pointer, however, will be sizeof(int *), which is likely substantially less. On my setup,

an int is 4 bytes (and the array is therefore 20 bytes), while a pointer is 8 bytes. The

address of the array is a pointer, so it is 8 bytes, and so is the address of the pointer—the

address of a pointer is itself a pointer, so when ap has type int *, &ap has type int **.

When we compute the length of the array in the program, we used

int n = sizeof array / sizeof *array;

Chapter 5 Arrays

94

The first sizeof array gives us the number of bytes in the array, and the second

sizeof *array gives us the number of bytes in the first element in the array. Since array

is an integer array, sizeof *array == sizeof(int). If you change the type of the array

later, you need to update the size calculation as well, if you had used sizeof(int). If you

use sizeof *array (or alternatively sizeof array[0]), you get the new type for free.

When we run through the loop, we use the array as a pointer in different expressions,

and because arrays decay into pointers when you use them as such, the behavior is the

same for array and ap.

�Arrays, Indices, and Pointer Arithmetic
Before we can explore how arrays and pointers fit together, we must examine the

memory layout of arrays. Assume that we have defined an array of five integers and

pointed an integer pointer to the array, like this:

int array[5];

int *ip = array;

In Figure 5-1, I have illustrated how the array and the pointer sit in memory. The

array consists of five consecutive memory blocks, each of sizeof(int) bytes, and array

is the address of the first integer. C considers both array and &array the same value, but

you cannot point array somewhere else, so you should not consider it a pointer, even

if it holds an address. The integer pointer, ip, also points to the address where the array

Figure 5-1.  Memory layout of an array and a pointer to the array

Chapter 5 Arrays

95

begins. This is a pointer, and it sits somewhere in memory, so in the figure, I have shown

it as taking up memory. The value at that memory location is the address of the array.

Unlike array, we can change ip to make it point somewhere else.

The five integers in array are found at array[0], array[1], array[2], array[3], and

array[4]. Since these are consecutive integers in memory, the integers sit at the location

where array points, one integer further down, two integers further down, and so on.

For any pointer p and integer i, you can add the integer and pointer, p + i or i + p,

and you can subtract the integer from the pointer p - i. Notice that subtraction is not

symmetric; you cannot subtract a pointer from an integer. The interpretation for such

pointer arithmetic relates to arrays. If p points into an array, then i + p and p + i point

to the element i higher than where p points, as long as p + i does not point more than

one element past the last element. For subtraction, p - i points to the element that is i

indices lower, provided that p – i does not point before the first element; see Figure 5-2.

The type of pointer subtraction is ptrdiff_t and is signed.

The part about not pointing before or after the array objects is to get strict

compliance with the language standard. You will most likely get a valid address even if

you use an expression that would index outside of the array—although this would be

an address that you should be very careful about dereferencing since you do not know

what it holds. But the standard only guarantees it when you stay within an allocated

array or array-like object. The latter refers to a single allocated chunk of memory where

you layout objects the same way as an array, one after another of the same type. In such

cases, you get valid pointers when you add or subtract an integer. Otherwise, you could,

for example, risk an under- or overflow or whatever else your architecture can throw at

you. The behavior is undefined unless you stay within the bounds of the array—except

that you are allowed to point at the address right after the last element. In the figure,

p + 3 points one past the last element, and that is also guaranteed to be a valid address.

Pointing one past the last element is a useful pattern for looping through a range:

T * range_begin = array;

T * range_end = array + n; // n is the length of the array

for (T *p = range_begin; p < range_end; p++) {

 // do something

}

Chapter 5 Arrays

96

So pointing one object past the end is explicitly guaranteed by the standard.

The comparison p < range_end between two pointers is also part of pointer

arithmetic. If you have pointers p and q into the same array-like object, you can compare

them: p < q, p <= q, p > q, and p >= q. You can always compare them with == and

!=, regardless of where they point, but less than and greater than only have a defined

interpretation in a range spanned by an array.

Going back to our int array and int * pointer in Figure 5-1, we have a pointer that

points to the first element in the array. The five integers in the array lie at addresses ip

+ 0, ip + 1, ip + 2, ip + 3, and ip + 4 (and ip + 5 points one past the last element).

The array itself works just like a pointer in this regard, so you get the same addresses at

array + 0, array + 1, array + 2, and so on.1

The notation array[i] is syntactic sugar, a more convenient notation, for *(array + i),

and similar for ip[i] and *(ip + i). The subscript operation we do with the square

brackets means that we compute the address of the element we want by adding the offset

to the pointer to the array, and then we extract the value we find at that address. The

two notations do exactly the same; the compiler translates the subscript notation into

the pointer notation blindly this way. The following program shows you the equivalent

notations and that arrays and pointers work exactly the same way:

#include <stdio.h>

#include <assert.h>

int main(void)

{

 int array[5] = { 0, 1, 2, 3, 4 };

1�There is one slight difference between indexing into an array and though a pointer, but the effect
is the same. When you write array[i], the compiler generates code that goes to the address
array + i and gets whatever is at that memory location. If you use p[i], the compiler first has
to get the value at p’s memory location, it needs to get the value of p first, and then it does the
same as for the array. This is because you can change the value of a pointer, you can make it
point somewhere else, but you cannot change the value of an array. It always points to the same
memory location. Therefore, the code needs to do a little more work with a pointer. The effect of
the operation is the same, however. As seen from the programmer, there is no difference.

Figure 5-2.  Adding and subtracting integers and pointers

Chapter 5 Arrays

97

 int *ip = array;

 for (int i = 0; i < 5; i++) {
 assert(array + i == ip + i);

 assert(array[i] == ip[i]);

 assert(array[i] == *(array + i));

 assert(ip[i] == *(ip + i));

 }

 return 0;
}

The size of an int is sizeof(int), so the distance from one element to the next is that

number of addresses. Therefore, if ip points to the first element in the array, then ip + i

must lie at address ip + I * sizeof(int) if we looked at the memory through a char

pointer. With a character pointer, we see each addressable memory block; typically, this

means each byte. From a char * point of view, the first int is sizeof(int) locations; then

the next int is the next sizeof(int) locations. To move a pointer from pointing at the first

integer to pointing at the second, the char pointer must move sizeof(int) locations.

So you can think of adding to an int pointer as moving in jumps of sizeof(int).

We can explore this by running through the array using both an index computed

from the array and integer pointer and one using a char pointer. For the integer pointer,

adding i to it will give us the element at index i, and the same is the case for the array

because it becomes a pointer when we use it this way. For the char pointer, however, we

have to adjust the size of the jumps. If you run the following code, you will see that you

get the same addresses from the three different ways of addressing the array’s integers:

int *ip = array;

char *p = (char *)array;

for (int i = 0; i < n; i++) {
 printf("%p %p %p\n",

 // int array has the right offset

 (void *)(array + i),

 // int * has the right offset

 (void *)(ip + i),

 // char * jumps in bytes...

 (void *)(p + i * sizeof(int)));

}

Chapter 5 Arrays

98

To hammer the point home, we can try iterating through the array with a different,

but similar, kind of pointer arithmetic. We can get the address one past the last element

by casting the array to a char pointer and adding sizeof array. The cast means that

when we add the size, we do so as char, so we get the address that is sizeof array after

array, which is the first address after the array. We can run a for-loop from the beginning

of the array to this point, incrementing an integer pointer by one in each iteration and

moving a char pointer by sizeof(int) each time:

char *end = (char *)array + sizeof array;

for (ip = array, p = (char *)array;

 p != end;

 ip++, p += sizeof *ip) {

 printf("%p %p\n", (void *)ip, (void *)p);

}

In the increment, I wrote sizeof *ip instead of sizeof(int). The size is the same

here, but it is defensive programming to use variables instead of types when you write

code like this. If the type of ip changes, the sizeof *ip is updated automatically, while

sizeof(int) would not be. The type-checker would not warn you about this, since it is

valid code to write sizeof(int), even if you meant the size of some other type.

For any type T, adding or subtracting an integer i to a T * pointer into an array

will give you an address that is i * sizeof(int) higher or lower in the array from the

perspective of a char *.

If you have two pointers into an array or array-like object, then you can also subtract

them. If, for example, p points to the value at index i and q points to the value at index

j in an array, then p - q gives you the value i - j, and q - p gives you j - i; see

Figure 5-3. If q points at a larger index than p, then q - p thus gives you the number of

elements between *p and *q.

Figure 5-3.  Subtracting a pointer from a pointer

Chapter 5 Arrays

99

In the following code, we use this pointer arithmetic to find the middle element

in a range for a binary search. A binary search locates an element in a sorted array by

checking the value in the middle of the range. If that element is too small, we know that

we have to search in the upper half of the range—because the elements in the array

are sorted—and if it is too large, we must search in the lower half. Thus, we can cut the

search space in half in each iteration.

int *bin_search(int *left, int *right, int x)

{

 while (left < right) {
 int *mid = (right - left) / 2 + left;

 if (*mid == x) return mid;
 if (*mid < x) {
 left = mid + 1;

 } else {
 right = mid;

 }

 }

 return 0;
}

The function uses two pointers to specify the range it should search in, and it

uses the expression (right - left) / 2 + left to get a pointer to the middle of the

interval. If the middle value is the one we are searching for, we return it, and if we do

not find the element in the entire search, we return a NULL pointer. There are smarter

interfaces, but this suffices for showing the use of pointer subtraction. Do not try to get

the middle element using (left + right) / 2; you are not allowed to add pointers.

You can use the function like this:

int a[] = { 1, 2, 4 };

int n = sizeof a / sizeof *a;
int *res = bin_search(a, a + n, 2);

Representing a range of an array using two pointers, one to the first element in the

range and the second that points one past the last, is an idiom in C. With a full array, we

know the beginning and the size of the data. For a subrange, we need a start and an end

index. The pointers representation of a range gives you the same interface to full and

sub-arrays and is one of the reasons that the standard always allows you to point one

past the last element.

Chapter 5 Arrays

100

�Out-of-Bounds Errors
If you somehow make a pointer that references something outside the bounds of an

array, before the first element or more than one past the last element, you risk overflows

or underflows, depending on how pointers are represented. This can make your pointers

end up pointing anywhere, at least as far as the language standard is concerned—in

practice, it is much less likely. But even if nothing untoward happens when computing

an address, it most likely will if you try to dereference the said pointer. You might access

memory that your process does not have permission to see, in which case your program

will crash. Worse, you can mess up the state of your program, so it gives faulty output—if

you are particularly unlucky, output that is sufficiently like the expected that you do not

notice. Out-of-bounds errors, when you access data outside the range of an array you are

working with, are frequent, and you should program defensively to avoid them.

Unfortunately, I do not have much general advice for avoiding these problems. When

you decide to work with a block of memory with room for n objects, of whatever size, you

need to keep track of where it starts and where it ends. If you do not know what n is, you

cannot allocate the right amount of memory, and if you do not know where the memory

block begins and ends, you cannot safely access it. You need to know where all arrays

begin and end, and there is no easy way around that.

Consistency goes a long way to help you, though. If you work on a range of objects,

decide how to represent the range, and use the same representation unless there are

excellent reasons not to. With indices, we typically say that the range (i, j) will include

the first number but not the last, so for an array, the range would be the elements

x[i],x[i+1],...,x[j-1] (but not including x[j]). For pointers, you can do the same. If

you run through the range [from,to), then you run as long as from < to, but you do not

go to from <= to. These are not hard rules, and if you have good reasons for breaking

them, then do so, but consistency makes it easier to write correct code.

Accessing data beyond the bounds of an array is a common and often severe error,

and the only way to prevent such errors is to be careful. To the best of my knowledge,

there is no easy trick here. Be careful when you design your code; that is the only way to

go.

Chapter 5 Arrays

101

�Pointers to Arrays
I mentioned at the beginning of the chapter that for an array array, &array is typically

the same address as the array itself. The type, however, differs. Since &array is the

address of an array, naturally the type should be a pointer to an array. Specifying that

type, however, requires a slightly off-putting syntax. In Chapter 3, I said that you create

a pointer to type T by putting an * behind the type, T *, but for arrays (and for functions

as we shall see in Chapter 13), this isn’t quite as simple. When we define an array, we

put the type of the items in the array before the variable name and then the length of the

array in square brackets after the variable. We cannot put * after the [] to get a pointer

to an array. You need to put an * followed by the variable you define in parentheses,

preceded by the type of the array and followed by [] like this:

int (*a1)[];

int (*a2)[10];

The number in the brackets, if any, is part of the type and is used by the compiler

to determine sizeof()—regardless of where the pointer actually points. Consider this

program:

#include <stdio.h>

int main(void)

{

 int array[10];

 int (*ap1)[] = &array;

 int (*ap2)[10] = &array;

 int (*ap3)[5] = &array; // Warning

 int (*ap4)[20] = &array; // Warning

 int *ip = array;

 printf("%p, sizeof array == %zu\n", (void *)array, sizeof array);

 // We cannot get sizeof *ap1, it is an incomplete type.

 printf("%p\n", (void *)*ap1);

 printf("%p, sizeof *ap2 == %zu (%zu)\n",

 (void *)*ap2, sizeof *ap2, 10 * sizeof(int));

 printf("%p, sizeof *ap3 == %zu (%zu)\n",

 (void *)*ap3, sizeof *ap3, 5 * sizeof(int));

Chapter 5 Arrays

102

 printf("%p, sizeof *ap4 == %zu (%zu)\n",

 (void *)*ap4, sizeof *ap4, 20 * sizeof(int));

 printf("%p, sizeof *ip == %zu (%zu)\n",

 (void *)ip, sizeof ip, sizeof(int *));

 return 0;

}

The output might look like this:

0x7ffeeb6fe860, sizeof array == 40

0x7ffeeb6fe860

0x7ffeeb6fe860, sizeof *ap2 == 40 (40)

0x7ffeeb6fe860, sizeof *ap3 == 20 (20)

0x7ffeeb6fe860, sizeof *ap4 == 80 (80)

All the pointers contain the same address, the address where the first element in the

array sits. The ap1 pointer has a type that allows us to assign any integer array to it, but

since it hasn’t specified the underlying array’s size, the type is considered “incomplete,”

and we cannot get its size using sizeof(). With ap2, we have specified that it points to

an array of length 10, which matches array, so the type-checker accepts the assignment.

The size of *ap2 is the same as sizeof array because the type of ap2 says that it points at

an array of length 10. The remaining two array pointers have different length. We assign

array to both, but since array’s length is neither 5 nor 20, we get warnings. When we

compute their sizes, we get the value assuming that the type specification was correct,

and not the true size of array.

�Arrays and Function Arguments
The differences between pointers and arrays quickly go away when you move away from

where arrays are declared. If you use arrays as function parameters, you get pointers.

The syntax is the same as for arrays, but both sizeof() and & will treat the parameter as

a pointer. When you call a function with an array argument, it decays into a pointer, and

the function will treat it as such.

Chapter 5 Arrays

103

void not_what_you_want(int array[])

{

 // sizeof array is sizeof(int *) here!

 printf("%zu\n", sizeof array);
 // Here, the array and the address of the array

 // are different. array is a local variable

 // that holds a pointer to the array!

 printf("%p %p\n", (void *)array, (void *)&array);

}

There is syntax for specifying the size of an array when it is a function argument. You

can tell C that an argument is an array, without specifying the size:

void array(int a[])

{

 printf("array: %zu %zu\n", sizeof a, sizeof *a);
}

You can specify a constant size:

void array_with_size(int a[50])

{

 printf("array[50]: %zu %zu\n", sizeof a, sizeof *a);
}

or a size you provide when you call the function:

void array_with_parameter_size(int n, int a[n])

{

 printf("array[n]: %zu %zu\n", sizeof a, sizeof *a);
}

but for this syntax, you must put the argument n before the array a[n]—you will get a

compile time error otherwise. That is a little unfortunate, since many functions in the

standard library put the length after the array argument, but that is how it is.

It doesn’t matter what you do here, however, because C will still treat the array as a

pointer regardless of the syntax you use. The different syntax lets you clarify the intended

data for function calls, but the type-checker will not do anything with it. At best, you will

get warnings when you compile this code because the compiler knows that the arrays are

turned into pointers and that this might not be what you want.

Chapter 5 Arrays

104

It is not an error to call a function that wants an array of a given size with a parameter

of a different size. Not even if the argument is shorter than the function expects, and

the function then might access memory beyond the last element in its input. You might

get the compiler to give you a warning in some limited cases. If you put static before a

constant in the argument declaration, you tell the compiler that arguments should have

at least the specified size. For example, with this declaration:

void size_constrained(int a[static 4])

{

 // Do stuff

}

you say that the argument to the function should be at least four integers long. If you give

it an argument that is shorter, and if you have enabled the right warnings, your compiler

will tell you that you are doing something wrong.2

int b[2];

size_constrained(b); // Warning

However, there is no check if you give the same function a pointer.

int *p = b;

size_constrained(p); // No warning

If you call such a constrained function through another function, you do not

necessarily get any help either—even if that function also specifies a minimal size.

void indirect_size_constrained(int a[static 2])

{

 size_constrained(a); // No warning

}

If we write a function that takes pointer to an array as argument, rather than the array

itself or a pointer to the first element, then the type information is kept to some extent.

For example, with this function:

void pointer_to_array(int (*a)[3])

2�I stress might, here, because the compiler might not support this, and some compilers will even
consider the static specification a syntax error.

Chapter 5 Arrays

105

{

 printf("*a: %zu = %zu x %zu\n",

 sizeof *a, sizeof *a / sizeof **a, sizeof **a);

}

you will get a warning if the argument is a pointer to an array shorter than 3, and sizeof

*a will still be 3 * sizeof(int), because that is the size of an integer array of length 3.

It also works if the length is a parameter:

void pointer_to_array_n(int n, int (*a)[n])

{

 printf("*a with n = %d: %zu = %zu x %zu\n",

 n, sizeof *a,

 sizeof *a / sizeof **a, sizeof **a);

}

and if you call the function through another function:

void indirect_pointer_to_array(int n, int (*array)[1])

{

 pointer_to_array(array); // Warning, because 1 != 3

}

The type-checking for array arguments is so limited that it is close to useless, and

you shouldn’t rely on it. The checking is better if you use pointers to arrays. There, the

type-checker will require that you use the right size. The reason for this is more natural

to explain after we look at multidimensional arrays, so I will delay the explanation to the

last section of the chapter where we do that.

If your function has an array argument, consider the length specifications as

comments rather than type declarations. As a rule of thumb, you should treat arrays as

pointers every time they are function arguments. At the point in the code where you

define an array, the value of an array is an address to the first element, and the size of the

array is the number of bytes it takes up in memory. Practically everywhere else, an array

is synonymous with a pointer to the first element in the array, and C doesn’t distinguish

between pointers and arrays there. Still, comments are useful when they show the intent

of code, and if you want to be explicit that you use a parameter as an array, and that it

has a given size, then use the array notation for the function argument.

Chapter 5 Arrays

106

�Multidimensional Arrays
All the arrays we have seen so far are one-dimensional. Whether we work on them as

arrays with indices, or we access them through pointers, they represent a sequence of

elements of one dimension. But you can also define multidimensional arrays; you just

need to add more dimensions when you define a variable. For example, you can define a

two-by-two array using

int A[2][2];

or a three-dimensional array as

double B[4][2][6];

If your compiler supports variable length arrays, you can also use runtime values:

int n = f();

int m = 2 * n;

long table[n][m];

If you want to provide initial values, the syntax resembles the one you use for one-

dimensional arrays, but you can provide arrays as the elements:

double A[2][3] = {

 { 1, 2, 3 },

 { 4, 5, 6 }

};

You can leave out the size of the first dimension:

double A[][3] = {

 { 1, 2, 3 },

 { 4, 5, 6 }

};

and C will infer it from how many elements you use in the initialization, but it will not

infer the size of following dimensions. Even though we provide three in both rows of this

table, C will not infer that the second dimension is three elements long.

The initialization can be incomplete, as it can for one-dimensional arrays. If you

only provide some of the values, then only those values are set. Here, the braces are

important. For the following two arrays:

Chapter 5 Arrays

107

double A[3][2] = {

 { 1 }, { 3 }

};

double B[3][2] = {

 1, 3

};

we initialize the first two columns in A’s first two rows. We provide two rows, wrapped in

braces, and one value for each. For B, we set the first two columns in the first row. The

values are filled in row-wise (they are grouped by the second dimension, the columns,

but this means that we have defined a row here and not a column). If the compiler

initialized the memory that holds the variables to zero, A would now be

1 0

3 0

0 0

while B would be

1 3

0 0

0 0

C needs to know all except the first dimension to work out the size of the full table,

so it can initialize it correctly. Since the deepest dimension could have all incomplete

initializations, C cannot work out the dimensional size by itself. That is why you must

specify it, even if you can leave out the first dimension. For the first dimension, C will

assume that the array is large enough to hold all the specified values, but nothing more,

if you do not provide a dimension size.

You do not need to provide the same number of initial values per dimension, so it is

valid to write code such as

char x[4][3] = {

 { 'a', 'b', 'c' }, // complete row

 { 'd', 'e' }, // first 2 columns

 { 'f' } // on the first column

 // the fourth row is not initialised

};

Chapter 5 Arrays

108

You index into a multidimensional array using the same syntax for one-dimensional

arrays; you just need to use more indices, one per dimension. If we index into the

preceding array D, D[1] gives us the row

{ { 5, 6 }, { 7, 8 } },

and in this row, we can pick the first column, D[1][0]:

{ 5, 6 }

and then, for example, get the second element there, D[1][0][1], which is 6.

An obvious application of multidimensional arrays is matrices; you can see two-

dimensional arrays used as such in this little program:

#include <stdio.h>

void mult(int n, int m, int l,

 double C[n][m],

 double const A[n][l],

 double const B[l][m])

{

 for (int i = 0; i < n; i++) {

 for (int j = 0; j < m; j++) {

 double x = 0.0;

 for (int k = 0; k < l; k++) {

 x += A[i][k] * B[k][j];

 }

 C[i][j] = x;

 }

 }

}

void print_matrix(int n, int m, double const A[n][m])

{

 for (int i = 0; i < n; i++) {

 for (int j = 0; j < m; j++) {

 printf("%2.2f ", A[i][j]);

 }

Chapter 5 Arrays

109

 printf("\n");

 }

}

int main(void)

{

 double A[2][3] = {

 { 1, 2, 3 },

 { 4, 5, 6 }

 };

 double B[3][2] = {

 { 1, 2 },

 { 3, 4 },

 { 5, 6 }

 };

 double C[2][2];

 mult(2, 2, 3, C, A, B);

 print_matrix(2, 2, C);

 return 0;

}

It is not the most exciting program, but it should give you an idea about how we can

work with multidimensional arrays.

But let us dig into how such arrays are represented in memory and how we can work

with them through pointers. Take this two-by-three matrix A:

int A[2][3] = {

 { 1, 2, 3 },

 { 4, 5, 6 }

};

Chapter 5 Arrays

110

It is two-dimensional; the first dimension has length 2, and the second has length 3.

But the computer’s memory is not two-dimensional, so the representation must be

linearized somehow. The way I like to think about the memory layout is recursive. A one-

dimensional array is a sequence of the underlying type, so an int array is a sequence of

int, and if the array is used as a pointer, it points at the first element. A two-dimensional

array is a sequence of the underlying type, which is a one-dimensional array. If used as

a pointer, it points to the first one-dimensional array. So, if we define a two-dimensional

array as

int A[2][3] = {

 { 1, 2, 3 },

 { 4, 5, 6 }

};

you get a sequence of one-dimensional arrays of integers. The one-dimensional arrays

have length 3, and the two-dimensional array contains two of those. The memory layout

of this matrix is shown in Figure 5-4, A).

A three-dimensional array, likewise, is a sequence of the underlying type, which is

two-dimensional arrays (that are then sequences of one-dimensional arrays and so on).

The array

int B[2][2][3] = {

 { { 1, 2, 3 }, { 4, 5, 6 } },

 { { 7, 8, 9 }, { 10, 11, 12 } }

};

Chapter 5 Arrays

111

is shown in Figure 5-4, B). The general case is that an n-dimensional array is a sequence

of (n - 1)-dimensional arrays of the right size. The last part is essential. C needs to know

the size of the (n - 1)-dimensional arrays both to arrange the memory and to allow

pointer arithmetic. Remember, if you have a pointer p of a given type, T, then adding i to

it, p + i, it gives you an address that is sizeof(T) * i after p. For this pointer arithmetic

to work, all the objects must have the same size, and that size must be known. You can

throw away the first dimension and work with an array as a pointer, but the remaining

dimensions are essential to know.

Figure 5-4.  Memory layout of multidimensional array

Chapter 5 Arrays

112

When you leave out the groupings in the initialization and give the array sequence of
the underlying objects:

double A[][3] = {
 1, 2, 3, 4, 5, 6
};

then knowing the memory layout of arrays makes it easier to reason about what happens
with incomplete array initialization. For a one-dimensional array, you initialize the
initial elements when you do not provide all of them.

int array[5] = { 1, 2, 3 }; // only first three

With a multidimensional array, you fill in from the left as well:

int A[2][2] = { 1, 2, 3 };

Here, the first row gets 1 and 2 because the first row is first in memory, and then the
second row gets a 3, and the last element is not initialized.

If you use more braces, you fill out the first parts of the arrays at the deeper dimensions.

int B[2][2] = { { 1 }, { 2, 3 } };

Here, the first row gets 1 and an uninitialized value, and the second row gets 2 and 3.
You can explore the memory layout of A and B with this program:

#include <assert.h>

int main(void)
{
 int A[2][3] = {
 { 1, 2, 3 },
 { 4, 5, 6 }
 };

 assert(sizeof A == 2 * 3 * sizeof(int));
 assert(sizeof *A == 3 * sizeof(int));
 assert(sizeof A[0] == 3 * sizeof(int));
 assert(sizeof A[0][0] == sizeof(int));

 int *p = (int *)A;
 for (int i = 0; i < 2; i++) {
 // p now points to the first element in row i

Chapter 5 Arrays

113

 assert(p == A[i]);
 for (int j = 0; j < 3; j++) {
 // p points to column j in row i
 assert(A[i] + j == p);
 assert(&A[i][j] == p);
 assert(A[i][j] == *p);
 p++;
 }
 }

 int B[2][2][3] = {
 { { 1, 2, 3 }, { 4, 5, 6 } },
 { { 7, 8, 9 }, { 10, 11, 12 } }
 };

 assert(sizeof B == 2 * 2 * 3 * sizeof(int));
 assert(sizeof B[0] == 2 * 3 * sizeof(int));
 assert(sizeof B[0][0] == 3 * sizeof(int));
 assert(sizeof B[0][0][0] == sizeof(int));

 p = (int *)B;
 for (int i = 0; i < 2; i++) {
 // p now points to row i
 assert(p == (int *)B[i]);
 for (int j = 0; j < 2; j++) {
 // p now points to column j in row i
 assert(p == (int *)(B[i] + j));
 for (int k = 0; k < 3; k++) {
 // p now points to the k'th element in B[i][j]
 assert(B[i][j] + k == p);
 assert(&B[i][j][k] == p);
 assert(B[i][j][k] == *p);
 p++;
 }
 }
 }

 return 0;

}

Chapter 5 Arrays

114

You will find that the sizes of the objects match what you would expect, for example,

since B is a two-by-two-by-three integer matrix, its size is 2 * 2 * 3 * sizeof(int).

Likewise, A[0] is a one-dimensional integer array of length 3, so its size is 3 *

sizeof(int). When we run through the arrays, incrementing the later dimensions

fastest, we move through addresses integers apart. The cast to int * before those loops

is necessary because two-dimensional arrays do not become pointers to the underlying

type automatically. The type of A is an array, and if you use it as a pointer, it is a pointer

to the first element in the array, and it has the corresponding type. If A was a one-

dimensional array of int, we could use it as an int pointer. It would decay to an integer

pointer at any time we use it as such. But the underlying type is not an integer. In the

program, A is a length 2 array of integer arrays of length 3. That is its type, and if you want

a pointer to it, it must be a pointer to this type, not int *. We are still safe to point an int

* at A, though. The array holds the address of its first element, and that is also the address

of the first integer in the memory layout. The types just differ.

We know how to define pointers to arrays, we saw it at the beginning of the chapter,

so we can make pointers that can move through the underlying array types. Consider

this program:

#include <stdio.h>

int main(void)

{

 int C[2][2][3] = {

 { { 1, 2, 3 }, { 4, 5, 6 } },

 { { 7, 8, 9 }, { 10, 11, 12 } }

 };

 int dim1 = sizeof C / sizeof C[0];

 int dim2 = sizeof C[0] / sizeof C[0][0];

 int dim3 = sizeof C[0][0] / sizeof C[0][0][0];

 printf("C dimensions %d x %d x %d\n", dim1, dim2, dim3);

 printf("First element in each row: ");

 int (*first_dim_p)[2][3] = C;

 int (*first_end)[2][3] = C + dim1;

 for (; first_dim_p < first_end; first_dim_p++) {

 printf("%d ", *(int*)first_dim_p);

Chapter 5 Arrays

115

 }

 printf("\n");

 printf("First element in each column: ");

 int (*second_dim_p)[3] = (int (*)[3])C;

 int (*second_end)[3] = (int (*)[3])C + dim1 * dim2;

 for (; second_dim_p < second_end; second_dim_p++) {

 printf("%d ", *(int*)second_dim_p);

 }

 printf("\n");

 return 0;

}

Your output should be

C dimensions 2 x 2 x 3

First element in each row: 1 7

First element in each column: 1 4 7 10

In the first half of the program, we compute the size of the dimensions for the array C.

We can, of course, see that where we define the array C, but computing them this way

illustrates that the size of C and the underlying types gives us the sizes we expect. C’s

size is 2 * 2 * 3 * sizeof(int) because it is a two-by-two-by-three integer array. Its

underlying type, which we can get by looking at its first element, C[0], is a two-by-three

integer array, so 2 * 3 * sizeof(int), and dividing the first by the second gives us 2, the

length of the first dimension—similar for the other two dimensions.

After that, we have two loops. For the first, we define a pointer to C’s underlying type,

which is two-by-three integer arrays. We can use C as a pointer, it will decay to one if we

do, so we can assign C to this pointer to make it point at the first element. Then we can go

through the rows by increments of it. Its increment size is the number of bytes that the

underlying type has, 2 * 3 * sizeof(int), so it will go through them, all two of them,

and point at the beginning of each. At that position, we extract the first integer. We need

to cast the pointer to (int *) before we dereference it because C will not automatically

cast a multidimensional array to a pointer to the base type. Arrays only decay to pointers

to their immediate underlying type, in this case, a two-dimensional array. You need to

explicitly go all the way down to integers here.

Chapter 5 Arrays

116

The second loop does much the same. Here, we want a pointer to the elements in the

second dimension of C, which are length 3 arrays. We will loop through all the columns,

and we could do that by first looping over all the rows, and in an inner loop handle the

columns, but if we consider the memory layout of C, we know that we can also see C as

a sequence of second-dimension objects. Jumping through these, rather than the first

dimension, just requires smaller jumps. If we define a pointer to length 3 arrays, we get

the jump size we want. Then we simply need to work out the interval we should jump

through. Obviously, we should start at the first element, which is the address we get

from C. There are two columns per row and two rows, so we should jump four times, and

we can compute the end address from that. We need to cast C in these computations

because the pointer arithmetic must be on pointers to objects of the right size. So we

cast C to the type of the second dimension, arrays of length 3, set the beginning and end

pointers, and then we get going with the loop.

What happens when we use multidimensional arrays as function arguments?

Remember that for one-dimensional arrays, they decayed to pointers to their underlying

type, and the type-checker ignores the size information we provide. It turns out that

multidimensional arrays work the same way as one-dimensional arrays. With these,

arrays also decay to pointers, but in their case, it is pointers to arrays. When you have

an array argument, it decays to the underlying type, the type it is a sequence of, and for

multidimensional arrays, that is a lower-dimensional array.

Consider this program:

#include <assert.h>

void array_full_size(int A[10][10])

{

 // A becomes a pointer to length 10 arrays

 assert(sizeof A == sizeof(int (*)[10]));

 assert(sizeof *A == 10 * sizeof(int));

}

void array_incomplete_size(int A[][10])

{

 // A becomes a pointer to length 10 arrays

 assert(sizeof A == sizeof(int (*)[10]));

 assert(sizeof *A == 10 * sizeof(int));

}

Chapter 5 Arrays

117

void pointer(int (*A)[10])

{

 // A is explicitly a pointer to length 10 arrays

 assert(sizeof A == sizeof(int (*)[10]));

 assert(sizeof *A == 10 * sizeof(int));

}

int main(void)

{

 int A[10][10];

 assert(sizeof A == 10 * 10 * sizeof(int));

 array_full_size(A);

 array_incomplete_size(A);

 pointer(A);

 int B[5][10];

 assert(sizeof B == 5 * 10 * sizeof(int));

 // B's first dimension is wrong, but no warnings

 array_full_size(B);

 array_incomplete_size(B);

 pointer(B);

 int C[10][5];

 assert(sizeof C == 10 * 5 * sizeof(int));

 // You get warnings here, because the

 // second dimension doesn't match

 array_full_size(C);

 array_incomplete_size(C);

 pointer(C);

 return 0;

}

Chapter 5 Arrays

118

The three functions are equivalent in what they do and how they treat their first

argument. The sizeof() will tell you that the argument is a pointer, and if there are

warnings about sizeof(), they will probably tell you that the argument is interpreted as

type int (*)[10]. That is because the argument is a pointer to one-dimensional arrays

of length 10. In the second function, we do not specify the first dimension, but C would

ignore it anyway. The argument in both of the first two functions is a pointer rather than

an array and indistinguishable from the explicit pointer we use in the third function.

C will also ignore that the B array doesn’t have the correct first dimension. This is

entirely equivalent to it ignoring the length of one-dimensional arrays. But it does not

overlook the length of the second dimension. That one, you have to get right, or you

will get warnings. The arguments are turned into pointers to arrays, but such pointers

need to know the size of the objects they point at, and to do that, they must know how

many objects they hold. So when you call a function with a multidimensional array, you

throw away information about the first dimension, but you keep the remaining. This also

explains why using pointers to arrays as function arguments is more stringently type-

checked than using arrays. That is because they must know what they point at. We do not

need to know the size of the first dimension, so C doesn’t care about the first dimension.

But with pointers to arrays, it must know them, and since a multidimensional array

argument gets turned into a pointer to arrays of the lower dimensions, the type-checker

will check those. So all three functions will complain that C doesn’t have the correct

second dimension. None of the function arguments are arrays themselves, so the

sizeof() of them is the size of a pointer. That is, after all, all that they are.

There are times where we want to work with arrays where the rows have different

length. For example, we might want to represent a lower triangular matrix without

putting zeros in the upper triangle. We can define one like this:

double *A[] = {

 (double[]){1},

 (double[]){2, 3},

 (double[]){4, 5, 6}

};

We could print the matrix like this:

int n = sizeof A / sizeof *A;

for (int i = 0; i < n; i++) {

 for (int j = 0; j <= i; j++) {

Chapter 5 Arrays

119

 printf("%2.2f ", A[i][j]);

 }

 printf("\n");

}

This looks array-like (and we do have arrays in play here), but it is a little more

complicated.

The type of A is an array to pointers to double. The underlying type to the left of A

is double *, and the [] means that we are defining an array. We only have a single []

so it is a one-dimensional array, not a two-dimensional one. The rows in A also look

like arrays, but they are not quite. The (double[]) is a type-cast that tells C that the

expression on the left should be translated into a one-dimensional double array. The

expression creates an array, where the first array is a one-dimensional array of length 1—

there is one element in the initial value—the second is a double array of length 2, and the

third is an array of length 3. So we do create three arrays, of different length, but they do

not go directly into A. They cannot because A is an array of double pointers, and arrays

are not pointers. They just decay to them when we use them as such. And that is what

we are doing here. We define the rows as arrays, but we define A as an array of pointers,

so what we get is pointers to the three arrays we use as rows. The memory layout is as

shown in Figure 5-5.

A contains three arrays in the sense that it contains three pointers to arrays, and we

can mostly use pointers as we use arrays. But these three arrays decayed into pointers

when we defined A, so it is really three pointers we have in the array, and if you get the

size of the array, you will find that it is the size of three double *.

assert(sizeof A == 3 * sizeof(double *));

Figure 5-5.  Representation of a lower triangular matrix

Chapter 5 Arrays

120

The size of an array is the number of bytes it takes up in memory, and if it held the six

double we put into it, the size should be 6 * sizeof(double):

assert(sizeof A == 6 * sizeof(double)); // FAILS

which it only is if a double is half the size of double *, which it probably isn’t. The

elements in A are double * (because that is what A is an array of), so their size are all

sizeof(double *).

assert(sizeof A[0] == sizeof(double *));

assert(sizeof A[1] == sizeof(double *));

assert(sizeof A[2] == sizeof(double *));

If they were really arrays, the first should be sizeof(double), the second 2 *

sizeof(double), and the third 3 * sizeof(double). But they are not arrays. They are

pointers to the first element in the arrays we created when we initialized A.

If we add a little more code to the definition, we could define A as

double row0[] = {1};

double row1[] = {2, 3};

double row2[] = {4, 5, 6};

double *A[] = { row0, row1, row2 };

The first definition didn’t name the rows, but otherwise we have done exactly the

same.

When we use A as a pointer, it decays to one. It is an array of double *, so it decays to

a pointer to that type, so it becomes a double **.

double **p = A;

assert(p[0] == A[0]);

assert(p[1] == A[1]);

The syntax for accessing elements in an array and at a certain offset of an array is the

same, so we can just as well use the pointer as we can use the array:

assert(p[0][0] == A[0][0]);

Chapter 5 Arrays

121

This is what is happening anyway when we use index into an array.

The arrays of pointers work the same way as multidimensional arrays, except that

the memory layout is different. If A was a two-dimensional array, then it would decay

to a pointer to its first element when we used it as a pointer. It does the same when it is

a one-dimensional array of pointers. In the first case, the pointer is to an array of one-

dimensional arrays, and in the second it is a pointer to double. In either case, if we take

the pointer and index once more, we get the position that is at the index’s offset from

that address. For a multidimensional array, all the elements are laid out contiguously

in memory. For the array of pointers, the rows lie somewhere separate from the first

dimension. You use the two types in exactly the same way.

Chapter 5 Arrays

123
© Thomas Mailund 2021
T. Mailund, Pointers in C Programming, https://doi.org/10.1007/978-1-4842-6927-5_6

CHAPTER 6

Working with Arrays
Enough about general considerations for arrays and pointers—it is time we see how we

use both in practice. I will start by showing a few examples of how we can solve some

selected problems using both arrays and pointers and illustrate how closely related the

two things are. Quite often, the code you write to operate on an array is the same as the

code you write to operate on pointers, even when you do not use pointers plus offsets

(which is, after all, exactly what we do when we use the array syntax). In an attempt to

make it at least appear that we are working with two different types of objects, I will use

different conventions for the functions in this section. Functions with array arguments

will have the type

rettype function(int n, type array[n]);

while functions with pointer arguments will have the type

rettype function(type *begin, type *end);

The idea is that we know an array and its length in the first case, and in the second

case, we have pointers to where the array begins and ends. This is exactly the same

information (see Figure 6-1), but for arrays, knowing their length is more natural than

knowing a pointer to where it ends, while for pointers it is often more convenient to

know the beginning and end of a sequence of objects.

Figure 6-1.  The length of an array, n, and the pointer range (begin,end)

https://doi.org/10.1007/978-1-4842-6927-5_6#DOI

124

If you want to run through every element in an array, you start at zero and continue

as long as your index is less than the length of the array. For example, if you want to add a

number to each element in an integer array, you can write a function that looks like this:

void add_array(int n, int array[n], int x)

{

 for (int i = 0; i < n; i++) {

 array[i] += x;

 }

}

If you have a range for the array elements through a pointer pair, you do the same

thing, except that you do not test if the index is less than n, but you test that the pointer

you run through the array is less than the end address.

void add_pointers(int *begin, int *end, int x)

{

 for (int *ip = begin; ip < end; ip++) {

 *ip += x;

 }

}

The for-loop looks similar, and the body only differs in how we update the integer

we point to. With an array index, you get the integer like this array[i], which, recall, is

the same as *(array + i). When you already have a pointer, that in increment through

the elements in the range, you just dereference it.

With functions such as this, you usually do not introduce the extra pointer ip. You

can use begin. Although it is a pointer, you do not change anything in the calling scope

by moving it. For that, you need a pointer to a pointer. Here, begin is just a local variable,

and we can run it up to end without any issues, as long as we do not need the beginning

of the range later in the function.

void add_pointers(int *begin, int *end, int x)

{

 for (; begin < end; begin++) {

 *begin += x;

 }

}

Chapter 6 Working with Arrays

125

I used a for-loop because it shows how closely related the two solutions are, but it is

also common to use a while (begin < end) loop. For this particular problem, however,

the natural solution

void add_pointers(int *begin, int *end, int x)

{

 while (begin < end) {

 *begin++ += x;

 }

}

is ugly. It is normal to update the pointer in the while-loop’s body, but combining the

increment and addition does not make the code easy to understand.

Since the functions take different arguments, you must, of course, call them with

different parameters. If you have an array and a size, it is easy to call add_array(), but

it is equally easy to get the beginning of the interval, array, and the end of the interval,

array + n.

int array[] = { 1, 2, 3, 4, 5 };

int n = sizeof array / sizeof *array;

add_array(n, array, 2);

add_pointers(array, array + n, -2);

Another equally simple problem is adding all the elements in an array. The

straightforward solutions, using either an array or a range of pointers, look like this:

int sum_array(int n, int array[n])

{

 int sum = 0;

 for (int i = 0; i < n; i++) {

 sum += array[i];

 }

 return sum;

}

Chapter 6 Working with Arrays

126

int sum_pointers(int *begin, int *end)

{

 int sum = 0;

 for (; begin < end; begin++) {

 sum += *begin;

 }

 return sum;

}

Somehow, I like the while-loop solution for this problem better than the one for

adding a constant to all elements:

int sum_pointers(int *begin, int *end)

{

 int sum = 0;

 while (begin < end) {

 sum += *begin++;

 }

 return sum;

}

but I think I still prefer the for-loop solution.

In the next example, we will reverse the elements in an array, and here the natural

solution differs between an array approach and a pointer approach. For the array, we

can run an index up to the middle of the array, at each index swapping with the element

at the same index counting from the back of the array, that is, we swap the value at index

i with that at index n-i-1, where n is the length of the array:

void swap_array(int array[], int i, int j)

{

 int tmp = array[j];

 array[j] = array[i];

 array[i] = tmp;

}

void reverse_array(int n, int array[n])

{

 for (int i = 0; i < n/2; i++) {

Chapter 6 Working with Arrays

127

 swap_array(array, i, n - i - 1);

 }

}

With pointers, we can move one pointer from the beginning of the range and another

from the end of the array, swapping the integers they point to until they meet.

void swap_pointers(int *i, int *j)

{

 int tmp = *i;

 *i = *j;

 *j = tmp;

}

void reverse_pointers(int *begin, int *end)

{

 if (end <= begin) return;

 end--; // point to last element

 while (begin < end) {

 swap_pointers(begin++, end--);

 }

}

When we swap, we need to point to the integers we wish to exchange, so here we

cannot use the rule that begin points to the first element in the range and end points one

element past it. The interface that reverse_pointers() provides to the caller, however,

uses that convention. There are times when you need both the beginning and end of an

interval to point into the array, but you should always provide a consistent interface to

users of your code, and the usual convention is that the end pointer doesn’t point at the

last element but one past it.

The first line in the function seems superfluous. If end is less than or equal to begin,

then we would never enter the while-loop, and everything would still work. This is

correct, and I cannot imagine a case where it wouldn’t work. However, the C standard

guarantees us that we can point at any item in an array and one past the last item, but it

does not guarantee that we can point one element before the first element. If both begin

and end point to the first element in the array, because we attempt to reverse an empty

interval, we would move end to point to an invalid item when we decrement it. This

could theoretically give us an underflow.

Chapter 6 Working with Arrays

128

�Sieve of Eratosthenes
For a slightly more interesting example, we turn to the Sieve of Eratosthenes. This is an

algorithm that computes all primes less than some number n. It works as follows: you

create a list of candidate primes, initially all the numbers from 2 to n - 1. The smallest

candidate is a prime (it is 2), and we move it to a list of primes. Then we remove all the

numbers that it divides. The smallest that remains is also a prime (it is 3). Each time we

have removed candidates divisible by the smallest element, the smallest element that

remains is a prime. If we repeat this procedure until there are no candidates left, we have

identified all the primes.

We will see a simple array solution and an equally simple pointer version. Both

methods follow the same idea but take different approaches, and of the two versions, the

array solution is faster. The efficiency of the implementation, however, is not the purpose

of the example. If we wanted better algorithms, there are smarter approaches to solving

the problem. Our goal here is learning about arrays and pointers.

�Array Solution
In the array solution, we will eliminate candidates by setting them to zero—we can use

any number that we know is not prime to indicate that a number is eliminated, and

zero is as good as any. We will go through the candidates in an outer loop, and when

we get an index with a non-zero element, we know that we have a prime p. When we

then remove candidates divisible by p in an inner loop, we will go through the array in

jumps of size p and set the numbers we encounter to zero. We obviously do not want

to eliminate p itself, so we start the inner loop after p. We could choose 2p, but any

number m between p and p2 that is divisible by p is also divisible by a smaller prime.

We will already have eliminated them. So we can start the inner loop at p2. By the same

reasoning, we can terminate the outer loop at n instead of n.

When we have finished this procedure, all the composite numbers in the candidates

array are zero, and what remains are primes. We can then run through the array and

compact it, so we have primes at the beginning of the array. The user of the algorithm

needs to know how many primes we found, so they can know how many numbers are in

the array after we are done, so we will make the algorithm return this number.

The implementation looks like this:

int compact0(int n, int array[n])

Chapter 6 Working with Arrays

129

{

 int m = 0;

 for (int i = 0; i < n; i++) {

 if (array[i] > 0)

 array[m++] = array[i];

 }

 return m;

}

int eratosthenes(int n, int buf[n - 2])

{

 // Init

 for (int i = 2; i < n; i++) {

 buf[i - 2] = i;

 }

 // Sieve

 for (int i = 0; i*i < n - 2; i++) {

 if (buf[i] == 0) continue;

 int p = buf[i];

 for (int j = p*p; j < n; j += p) {

 buf[j - 2] = 0;

 }

 }

 // Compact

 return compact0(n - 2, buf);

}

The compact0() function is the simplest of the two. We run the index i through the

array while keeping track of how many non-zero integers we have put at the front of

it. If we have inserted m non-zero elements at the front, then the next place we should

insert one, if there are more, is at index m. So when we see a non-zero index, we put it

in array[m] and increment the counter m. When we have made it through the array, m

already holds the number of non-zero elements, so we return it.

Chapter 6 Working with Arrays

130

In eratosthenes(), we initialize the buf array with the numbers from 2 to n. After

that, we run the algorithm as described earlier. When we index into buf, we subtract

2. In the algorithm, we work on the numbers from 2 to n, so we don’t have 0 and 1 as

prime candidates. Because we don’t put them at the beginning of the buf array, we must

compensate for it by subtracting two when we index into it.

When we call compact0() as the last step, we give it a buffer with n-2 elements, so

that is the first argument to the function. Inside compact0(), the argument n is the length

of the array, while inside erathosthenes() it is n-2, but as long as we remember to give

compact0() the correct length, all is well.

�Pointer Solution
In the second solution, the eratosthenes() function will also take an array as input.

We can easily change it to take a begin and end range, but an array is a more natural

argument to the function. You can, of course, do the same with pointers as you can with

arrays—the two are the same when you pass an array to a function—but we will take a

different approach to try something else.

It is when we sieve the primes that the two approaches differ. In the array version, we

jump through the candidates in jump sizes given by the current prime, and we tag those

numbers we want to remove. Then we compact the array at the end. With the pointers,

we will compact the output simultaneously with removing numbers divisible by the

current prime. We will have the following invariants. The primes we have identified will

sit in the interval from buf (the input array) to a pointer, candidates. From candidates

to another pointer, end, we keep the potential candidates. In a loop, we move the

candidates pointer one step forward, in effect moving the smallest candidate to the list

of primes, and then we filter the interval between candidates and end; see Figure 6-2.

When we are done, all the primes are between buf and candidates, so we can get their

number from candidates - buf.

The main function is straightforward. We initialize the buffer, set up the candidates

and end pointers, and then loop while there are candidates left, that is, as long as

candidates < end. We get the prime and increment the candidates pointer, and then

we sieve the candidates.

Chapter 6 Working with Arrays

131

int eratosthenes(int n, int buf[n - 2])

{

 // Init

 for (int i = 2; i < n; i++) {

 buf[i - 2] = i;

 }

 // Sieve

 int *candidates = buf;

 int *end = buf + n - 2;

 while (candidates < end) {

 int p = *candidates++; // Get prime and move it

 sieve_candidates(&candidates, &end, p);

 }

 return end - buf;

}

Chapter 6 Working with Arrays

132

The sieve_candidates() compacts the candidates by removing those divisible by

the prime p. It does that by scanning through all the candidates, moving those that p do

not divide to the front. It does this in an analogous way to how we compacted the non-

zero numbers in the array version.

Figure 6-2.  The pointer version of Eratosthenes Sieve

Chapter 6 Working with Arrays

133

void sieve_candidates(int **from, int **to, int p)

{

 int *output = *from;

 for (int *input = *from ; input < *to; input++) {

 if (*input % p != 0)

 *output++ = *input;

 }

 *to = output;

}

In this function, we take pointers to the range pointers as input, and so we call the

function with the pointers’ addresses. That way, we can update the interval from within

the function. We only update the end pointer, since we have already incremented

the candidates pointer before we call the function. So, we could have made the from

argument an int * type instead, but I dislike such asymmetry when I call a function with

a range, so I prefer that either both or none of the arguments are pointers to pointers.

If you want pointers to integers, instead of their addresses, you can change the

implementation so sieve_candidates() return the new end pointer:

int *sieve_candidates(int *from, int *to, int p)

{

 int *output = from;

 for (int *input = from ; input < to; input++) {

 if (*input % p != 0)

 *output++ = *input;

 }

 return output;

}

int eratosthenes(int n, int buf[n - 2])

{

 // Init

 for (int i = 2; i < n; i++) {

 buf[i - 2] = i;

 }

Chapter 6 Working with Arrays

134

 // Sieve

 int *candidates = buf;

 int *end = buf + n - 2;

 while (candidates < end) {

 int p = *candidates++; // Get prime and move it

 end = sieve_candidates(candidates, end, p);

 }

 return end - buf;

}

You could also move both the beginning and end of the candidates interval in the

sieve_candidates() function. You could get the prime and increment the input inside

the function. In that case, you do need both the beginning and end of the interval to be

the addresses of the pointers.

void sieve_candidates(int **from, int **to)

{

 int p = *(*from)++; // Get prime and move it

 int *output = *from;

 for (int *input = *from ; input < *to; input++) {

 if (*input % p != 0)

 *output++ = *input;

 }

 *to = output;

}

int eratosthenes(int n, int buf[n - 2])

{

 // Init

 for (int i = 2; i < n; i++) {

 buf[i - 2] = i;

 }

 // Sieve

 int *candidates = buf;

 int *end = buf + n - 2;

 while (candidates < end) {

Chapter 6 Working with Arrays

135

 sieve_candidates(&candidates, &end);

 }

 return end - buf;

}

I don’t like the third solution much because the sieve_candidates() function does

more than its name implies, but it is a matter of taste. In any case, you can see how we

can solve the same problem through pointers in several ways.

�Radix Sorting
The last example I will show, before moving on, is more involved and also more useful.

That example is radix sort, an algorithm that lets us sort integers in linear time. We will

implement it using a mix of arrays and pointers, choosing which is more convenient for

each subtask.

Radix sort is based on repeated bucket sorts, so let us implement that first, in its

simplest form. The simplest variant of bucket sort is known as count sort, and the idea

is this. If we have elements from some small and ordered set, I will use unsigned char

later, we can build a table with one entry per possible element in the set. Then, we

can scan through our input and count how often we see each element. If we then run

through the table in increasing order of keys, we can output each key the number of

times we have seen it in the input. Because we go through the table in the correct order,

it gives us the elements in sorted order.

We call the entries in the table buckets because in the general case we put our

elements there, but for count sort, we just count. An implementation can look like this:

#include <stdio.h>

void sort_chars(int n, unsigned char array[n])

{

 int buckets[256];

 for (int i = 0; i < 256; i++) {

 buckets[i] = 0;

 }

 for (int i = 0; i < n; i++) {

Chapter 6 Working with Arrays

136

 unsigned int bucket = array[i];

 buckets[bucket]++;

 }

 int k = 0;

 for (int i = 0; i < 256; i++) {

 for (int j = 0; j < buckets[i]; j++) {

 array[k++] = (unsigned char)i;

 }

 }

}

int main(void)

{

 unsigned char array[] = { 'f', 'o', 'o', 'b', 'a', 'r' };

 int n = sizeof array / sizeof *array;

 sort_chars(n, array);

 for (int i = 0; i < n; i++) {

 printf("%c", array[i]);

 }

 printf("\n");

 return 0;

}

We initialize the table with zeros—we have seen each element zero time before we

start—and then we increment the count for a key each time we see it in the input. After

that, we go through the table and fill the array accordingly.

Count sort works well for characters because there are only 256 of them—assuming

that a char has 8 bytes. If we tried the same for integers, the buckets table would be too

large. If integers are 32 bits, then we have more than 4 billion of them, and since each

bucket should contain an integer, that is 4 billion times 4 bytes. Your machine might run

out of memory. Even if it doesn’t, initializing the table, and running through it in the last

step, requires that you run through 4 billion integers. The algorithm is slow, in addition

to wasteful in memory. We need a little more work before we can use it to sort integers.

Chapter 6 Working with Arrays

137

First, we go from count sort to bucket sort. If we are only sorting characters, then

counting how often we see one suffices, but if we want to sort something more complex

using a key that in the next function is also just a character, then we need to store the

objects in the buckets.

We could make a table that contains some data structure where we could store the

elements, but since the chapter is on arrays, it might not surprise you that we will use

an array instead. It is possible to represent the buckets as sub-segments of an array and

move the input to the correct buckets when we scan through the input.

We start by counting how many times each key occurs in the input, just as before.

After that, we compute a table that for each key k tells us how many occurrences of

keys smaller than k there are in the input. This table, let us call it buckets, identifies the

buckets. If we have an array output where we wish to write the sorted elements, then

all the elements with key k should go between index buckets[k] and buckets[k+1];

see Figure 6-3. For each key, in our example that is all characters but in the figure I have

made it the set {0, 1, 2, 3, 4}, we have a count that we then translated into the bucket

numbers. For key 0, we have two occurrences in the input, and buckets[0] points to

index 0 in the output (because there are no keys smaller than 0). This is the index where

the zeros should be inserted. Key 1 also occurs twice, and buckets[1] points to index 2—

not because there are two ones in the input, but because there are two zeros; the zeros’

bucket goes before the ones’ bucket, and it takes up two entries. There are also two twos,

and the two bucket starts at index 4 (before it, we have two entries for zeros and two for

ones). We do not have any threes in the input, but it is a key, and it gets a bucket value.

The threes, if we had any, should go in the bucket starting at index 6 (there are two zeros,

two ones, and two twos that go before the zeros). There is one 4 key in the input. The four

bucket also starts at six because the threes’ bucket is empty.

When we have built the buckets table, we can scan through the input, extract each

element’s key, and get its bucket. We will put the element at the first index in the bucket,

and then we will move the bucket pointer to the next index. That way, every time we

see a new key, it goes into its bucket in the next position. Figure 6-4 shows a run of the

bucket sort algorithm. In A) we are ready to process the first element; the output is

empty, but we have the bucket pointers ready. The first element is two, so we look up

the bucket pointer for two and find that it is four. We insert two at that index and update

buckets[2] to five. Then, in B), we see a zero. Since buckets[0] is zero, that zero goes

into index 0 in the output, and we update buckets[0] to one. We keep following this

procedure until we have gone through the entire input, H), at which point we have the

sorted elements in the output array.

Chapter 6 Working with Arrays

138

Figure 6-3.  Buckets and the output array

Chapter 6 Working with Arrays

139

If the keys and the input are the same, the counting sort is a better choice, of course.

It is more straightforward, and we only need to know how many times each key occurs.

But if the keys are only part of objects, then we keep the full data while sorting the

elements when we use this bucket sort.

Figure 6-4.  Example run of a bucket sort

Chapter 6 Working with Arrays

140

As an example, we can take strings as our input data and sort them with respect to
the first character. We need 256 buckets as before, we can count how many times each
character appears as the first character in the input similarly to before, and then we can
compute the buckets array. I find it easier to compute that array from the right because I
can count how many keys I have seen as I move toward the left and then put the indices
at that offset from the right. After we have the table, the scan through the input, with
copying the strings to their buckets, is straightforward:

#include <stdio.h>

void compute_buckets(int n, char *array[n], int buckets[256])
{
 for (int i = 0; i < 256; i++) {
 buckets[i] = 0;
 }

 for (int i = 0; i < n; i++) {
 unsigned char bucket = (unsigned char)array[i][0];
 buckets[bucket]++;
 }

 int m = n;
 for (int i = 256 - 1; i >= 0; i--) {
 int count = buckets[i];
 buckets[i] = m - count;
 m -= count;
 }
}

void sort_strings(int n, char *input[n], char *output[n])
{
 int buckets[256];
 compute_buckets(n, input, buckets);
 for (int i = 0; i < n; i++) {
 unsigned char bucket = (unsigned char)input[i][0];
 int index = buckets[bucket]++;
 output[index] = input[i];
 }

}

Chapter 6 Working with Arrays

141

int main(void)

{

 char *array[] = {

 "foo", "boo", "bar", "qoo", "qar", "baz", "qux", "qaz"

 };

 int n = sizeof array / sizeof *array;

 char *output[n];

 sort_strings(n, array, output);

 for (int i = 0; i < n; i++) {

 printf("%s\n", output[i]);

 }

 return 0;

}

If you run the program, you will see that we have sorted the strings with respect to their

first character, but not the remaining characters. First, we get the strings that start with b,

then foo, and then the strings that start with q. Within the bucket, that is, within the part of

the array that starts with the same first character, the strings are in the same order as they

were in the input. When a sorting algorithm keeps the order of the elements, except for

the key we sort with, we say that the algorithm is stable, and that is important for the next

step—because now we finally get to radix sorting integers.

Because the bucket sort is stable, we can sort a 2-byte integer by first sorting it

using the least significant byte as key and then using the most significant byte. The first

sort leaves the integers far from sorted, but if we extract integers with the same most

significant byte, they are in the correct order. For numbers that agree on the first 8 bits,

their relative order is determined by the next 8 bits, and the first bucket sort orders the

input with respect to those. Then, if, when we sort with respect to the next byte, we put

them in buckets determined by that byte, and within each bucket, they remain ordered

because the sort is stable. Thus, if we first sort with the least significant byte and then the

next, then we have sorted with respect to both bytes. This argument works for as many

bytes as you want, so we can sort all size integers—at least all non-negative integers, but

we will handle the negative integers later.

Chapter 6 Working with Arrays

142

We can implement that idea like this:

void bucket_sort(int n, int offset,

 int const input[n], int output[n])

{

 int buckets[256];

 for (int i = 0; i < 256; i++) {

 buckets[i] = 0;

 }

 for (int i = 0; i < n; i++) {

 unsigned char bucket = (input[i] >> 8 * offset) & 0xff;

 buckets[bucket]++;

 }

 int m = n;

 for (int i = 256 - 1; i >= 0; i--) {

 int count = buckets[i];

 buckets[i] = m - count;

 m -= count;

 }

 for (int i = 0; i < n; i++) {

 unsigned char bucket = (input[i] >> 8 * offset) & 0xff;

 int index = buckets[bucket]++;

 output[index] = input[i];

 }

}

void radix_sort(int n, int array[n])

{

 // It is *very* unlikely that sizeof an integer is odd, but if

 // it is, you need to move the results from helper

 // to array. I assume that we have an even number of bytes

 // because that is practically always true for int

 static_assert(sizeof *array % 2 == 0,

 "integer sizes must be powers of two");

Chapter 6 Working with Arrays

143

 // Helper buffer; handle input/output switches

 // when bucket sorting

 int helper[n];

 // For switching between the buffers

 int *buffers[] = { array, helper };

 int bucket_input = 0;

 for (int offset = 0; offset < sizeof *array; offset++) {

 bucket_sort(n, offset,

 buffers[bucket_input],

 buffers[!bucket_input]);

 bucket_input = !bucket_input;

 }

}

For the bucket sort, the only difference between this version and the previous is how

we get the keys from the input. Here, we have an offset that tells us which byte in the

integer we want. We extract the byte using shifting and masking out the least significant

byte. We could also get the bytes by casting the integer to a char pointer and using

offsets, but then we would need to deal with endianness. Shifting and masking get the

job done just as well.

In radix_sort(), we iterate through the bytes in an integer and bucket sort with

respect to them. The bucket sort needs both an input and an output array—you cannot

write the output back into the input array because you might overwrite something you

need to scan through later, so this is unavoidable. To deal with that, we allocate a buffer,

helper. With repeated calls to bucket sort, we flip between the input array and the helper

array. We could use two fixed arrays and then copy the data between them after each call,

but flipping between the array is more efficient. In the first call, we sort the data in array

into helper. In the second call, they go from helper to array. And we keep switching until

we have made it through sizeof *array iterations. We handle the switching by putting

both arrays into another array. That makes the array buffers an array of buffers (where the

type of the buffers in this case is int *, but that is also what both array and helper are).

The variable bucket_input is the one that picks out which array should be used as input

and which should be used for output. In each iteration, we flip it.

Chapter 6 Working with Arrays

144

In the implementation, I have assumed that this is an even number. I am not aware

of any architecture where this isn’t the case. If you have an odd number, you need to

copy the elements from helper to array after sorting the integers, but I haven’t bothered

here.1

You can now try sorting integers using this function:

int main(void)

{

 int array[] = { -1, -2, 13, 12, 13, 6, 14, -3, 42, 13 };

 int n = sizeof array / sizeof *array;

 radix_sort(n, array);

 for (int i = 0; i < n; i++) {

 printf("%d ", array[i]);

 }

 printf("\n");

 return 0;

}

You will, however, likely find that the negative numbers are sorted as larger than

the positive numbers, and they are in the reverse order on top of that. If that happens,

it is because your computer represents integers as two’s complement, and almost all

hardware does. I will not bore you with what that is, but merely say that the bit patterns

for integers in this format are such that the negative numbers, when seen as unsigned

numbers, are larger than the positive numbers and in reverse order. For our purposes,

for fixing the problem, that suffices.

If we know that the negative numbers will end up in the wrong end of the output, we

can separate the positive and negative numbers before we sort. We can explicitly put the

negative numbers at the lower end of the array and the positive integers at the high end.

We will write a function, split(), that moves all the negative numbers to the left and

all the non-negative numbers to the right and returns the splitting point between the two

segments. We use two helper functions here, scan_right() that finds the leftmost non-

negative number in a range and scan_left() that finds the rightmost negative number:

// Both left and right must point to legal addresses

1�The static_assert macro was introduced in C11, so if your compiler doesn’t support it, just
delete the line. It is unlikely that your integer type should have an odd size.

Chapter 6 Working with Arrays

145

int *scan_right(int *left, int *right)

{

 while (left < right) {

 if (*left >= 0) break;

 left++;

 }

 return left;

}

// Both left and right must point to legal addresses

int *scan_left(int *left, int *right)

{

 while (left < right) {

 if (*right < 0) break;

 right--;

 }

 return right;

}

Unlike the convention we usually use, where left would be the first element in the

range and right points one past the last, both point into the range with these functions.

It makes the code easier to write if we do it this way, and the functions are never

supposed to be called by anyone besides ourselves in this algorithm, so we can get away

with breaking conventions in this case.

Segmenting and splitting the interval now works by repeatedly finding the leftmost

non-negative and the rightmost negative values and swapping the two, until the left and

right pointers meet. When that happens, we are done. We need to know the size of the

negative part for later, so we get it as the distance from the beginning of the array to the

left pointer and return it.

void swap(int *left, int *right)

{

 int i = *left;

 *left = *right;

 *right = i;

}

Chapter 6 Working with Arrays

146

int split(int n, int array[n])

{

 int *left = array, *right = array + n - 1;

 while (left < right) {

 left = scan_right(left, right);

 right = scan_left(left, right);

 swap(left, right);

 }

 return left - array;

}

If we split the input into the positive and negative parts, with the positive numbers

at the high end, we can sort the two segments independently. That will put the non-

negative numbers in their correct locations, but the negative numbers need to be

reversed. Reversing an array, however, is not difficult. We have already implemented that

a few pages back, and here is another version of that:

void reverse(int n, int array[n])

{

 int *left = array, *right = array + n - 1;

 while (left < right) {

 swap(left++, right--);

 }

}

For both split() and reverse(), there is a potential problem if the array is empty.

We compute right as the address n - 1 from array, which could be array - 1 if n is

zero. If this is a valid address, then the while-loops will work correctly—we never enter

them—but to be strictly compliant with the C standard, we cannot assume that the

address before the first element in an array is valid. We resolve the problem by requiring

that you cannot call the functions with empty arrays and ensure it in the main sorting

function.

Putting it all together, we can radix sort integers like this:

void sort_int(int n, int array[n])

{

 if (n <= 0) return;

Chapter 6 Working with Arrays

147

 int m = split(n, array);

 if (m > 0) {

 radix_sort(m, array);

 reverse(m, array);

 }

 if (m < n) {

 radix_sort(n - m, array + m);

 }

}

All the functions we call takes a size and an array as input. When we call split(), it

should work on the entire array, so it gets n and array. The first radix_sort() should

only sort the negative numbers, so we tell it that the input is of length m. We still give it

all of array, though, because we cannot pass parts of an array to a function. In function

calls, arrays are always pointers, but when we specify the length as m and give the

function array, we are in effect calling the function on the first m elements of array. The

same goes for the following reverse() call. For the last radix_sort(), the length is the

number of non-negative integers in the input, which is n - m. The array they sit in sits at

address array + m, so we call the sorting function with that.

�Generic Functions on Arrays
Generic functions are functions that will work on any type (with whatever properties

required by the function). In C, generic types mean void pointers. If a function can work

on more than one type, it will take one or more void pointers as arguments. In Chapter 4,

we saw how qsort() uses void pointers to sort any type of data we can provide an order

on via a function. Now it is time to try writing our own array functions that work on any

array type.

There is not a huge difference between operating on void pointers and pointers of

other types, except that you cannot dereference them, that is, look at what they point to,

and you do not know how large the objects they point at are so you cannot do pointer

arithmetic—so, actually, a huge difference, since we basically cannot do anything with

void pointers instead of pointing.

Chapter 6 Working with Arrays

148

If you have an array of a certain type, and you want to move from the address of

one element to the next, then you need to add one to a pointer of that type. The pointer

type tells the compiler how much you need to add to get to the next element. Since void

is an incomplete type, it is something we don’t know what is, we cannot do the same

with void pointers. While some compilers will let you treat them as character pointers,

so you can do arithmetic where the assumed size of the objects is one char, this is not

guaranteed by the standard. However, the standard says that you are always allowed to

cast data to character pointers to get the address of their first byte, so we can cast our

void pointers to char pointers and manipulate the underlying data that way. Then, if

you want to move to an address at the right distance, you must multiply the number of

elements you wish to move with the size of the objects.

If we have to cast void pointers to char to manipulate data anyway, why use void

pointers in the first place. You are guaranteed by the standard that you can get a char

pointer to the first memory address of any object, and you can use it to scan through

to the last memory address in the object. But char pointers have a type; you need a

type-cast to point them at other data objects, and you signal with your code that you

can use what they point to as characters. That might not be a signal that you want to

send. If you work with objects where you know nothing about their type or underlying

representation, then you shouldn’t pretend that they are blocks of char. If you need to

manipulate their raw memory, or more frequently if you need to move from one object

to the next in an array, you have to use a character pointer, but the rest of the time, to

signal that it is unknown data, use void *.

What if we want to do something with what they point at? We cannot dereference

them, and even if we could, we wouldn’t know what kind of data they point at. We

need to use other generic functions, or we need to ask the caller for information. As

an example of the first situation, consider reversing the elements in an array. We have

already seen a reversal function for integers in the last section, and it should be obvious

that we could write a similar function for other types. We should therefore, one should

think, be able to write a function that can reverse arrays of any types.

A couple of the solutions we saw took pointers to either end of the array, one

pointing at the first element and one pointing to the last. Then, they swapped the objects

they pointed at, and the left pointer increased by one while the right pointer decreased

by one. We can do the same with void pointers, except that we have to deal with the size

of the objects explicitly, and we need to cast to a char pointer to do this. To get the first

element, we do not need to do anything. If we assign the address of an array to a void

Chapter 6 Working with Arrays

149

pointer, it will point at the beginning of the array; in other words, it points at the first

element. For the second pointer, we want to point at the last element. If the array has

length n, we want to point at index n - 1, but adding n - 1 will only work if the objects

have size 1. If they do not, we must multiply by the object size. Adding to a void pointer

is not standard compliant (although some compilers allow it), so we need to use char *

for that. When we update the pointers, we must increase and decrease with the object

size as well because adding or subtracting one only works if the objects have size one.

So, we reach a solution that looks like this:

void reverse(void *array, int n, int size)

{

 if (n <= 0) return; // avoid right underflow

 char *left = array;

 char *right = left + size * (n - 1);

 while (left < right) {

 // TODO: swap *left and *right

 left += size; right -= size;

 }

}

The swapping part also needs to know about the object sizes. With integers, we could

swap with code such as

int tmp = *left;

*left = *right;

*right = tmp;

but we cannot dereference void pointers, so it won’t work. Even if we could, if we do

not know the size of the objects, then we don’t know how many bytes to copy to move

one value into another memory address. If, however, we do know the size of the objects,

as we do in our reverse() function, then we can move that many bytes between the

objects. For the tmp variable, we can’t get the underlying type because we do not know

it, but we can use a buffer that can hold the right number of bytes. With that idea, the

complete reverse() function can look like this:

Chapter 6 Working with Arrays

150

void reverse(void *array, int n, int size)

{

 if (n <= 0) return; // avoid right underflow

 char *left = array;

 char *right = left + size * (n - 1);

 char tmp[size];

 while (left < right) {

 memcpy(&tmp, left, size);

 memcpy(left, right, size);

 memcpy(right, &tmp, size);

 left += size;

 right -= size;

 }

}

The memcpy() function blindly copies size bytes from one address to another, and

that is exactly what we need here.

If we know the size of the objects our array contains, there are many algorithms

we can generalize from working on one type to all types. But if we need to know more

than just the size of the objects, we need the caller to provide that information as well,

and that typically involves giving the generic function a pointer. We saw this qsort()

in Chapter 2, but let us try to write our own function with this feature. We will write a

function that tests if an array is sorted. That way, we can reuse the comparison functions

from Chapter 2.

An array is sorted if we can run through it, compare each element to the next, and

find that a larger element is never in front of a smaller element. If we have a fixed type,

for example, int, we can do this:

bool int_is_sorted(int n, int array[n])

{

 for (int i = 1; i < n; i++) {

 if (array[i - 1] > array[i])

 return false;

 }

 return true;

}

Chapter 6 Working with Arrays

151

A generic version requires a function to help us compare array[i - 1] with

array[i], and we need to access the elements with a void pointer that increments by the

right amount.

If array is a void pointer, and obj_size is the size of the individual elements in the

array, then we can get the indices as

void const *a = (char *)array + (i - 1) * obj_size;

void const *b = (char *)array + i * obj_size;

The type-cast is there, once again, so we can do pointer arithmetic. We don’t need to

do any arithmetic on a and b, so they can stay void *.

If we then have a function argument, cmp(), that works as the functions for qsort(),

we can compare the two elements as cmp(a, b). Combining these two things, a void

pointer function for checking if an array is sorted can look like this:

typedef int (*compare_function)(void const *,

 void const *);

bool is_sorted(void const *array,

 size_t len, size_t obj_size,

 compare_function cmp)

{

 for (int i = 1; i < len; i++) {

 void const *a = (char *)array + (i - 1) * obj_size;

 void const *b = (char *)array + i * obj_size;

 if (cmp(a, b) > 0) {

 // a is larger than b, so the array is not sorted

 return false;

 }

 }

 return true;

}

The typedef defines a function pointer type. We return to those in Chapter 13,

but for now simply accept that it defines a type of functions that take two void const

pointers as input and returns an int.

You can try it out in the following program that uses comparison functions for

integers and strings both to sort arrays and test whether they are sorted:

Chapter 6 Working with Arrays

152

#include <stdio.h>

#include <string.h>

#include <stdbool.h>

int int_compare(void const *x, void const *y)

{

 // Get the objects, and interpret them as integers

 int const *a = x;

 int const *b = y;

 return *a - *b;

}

int string_compare(const void *x, const void *y)

{

 // Get the objects and interpret them as strings

 char * const *a = x;

 char * const *b = y;

 return strcmp(*a, *b);

}

typedef int (*compare_function)(void const *, void const *);

bool is_sorted(void const *array,

 size_t len, size_t obj_size,

 compare_function cmp)

{

 for (int i = 1; i < len; i++) {

 void const *a = (char *)array + (i - 1) * obj_size;

 void const *b = (char *)array + i * obj_size;

 if (cmp(a, b) > 0) {

 // a is larger than b, so the array is not sorted

 return false;

 }

 }

 return true;

}

int main(void)

Chapter 6 Working with Arrays

153

{

 int int_array[] = { 10, 5, 30, 15, 20, 30 };

 int int_array_length =

 sizeof int_array / sizeof *int_array;

 if (is_sorted(int_array, int_array_length,

 sizeof *int_array, int_compare)) {

 printf("int_array is sorted\n");

 } else {

 printf("int_array is not sorted\n");

 }

 qsort(int_array, int_array_length,

 sizeof *int_array, int_compare);

 if (is_sorted(int_array, int_array_length,

 sizeof *int_array, int_compare)) {

 printf("int_array is sorted\n");

 } else {

 printf("int_array is not sorted\n");

 }

 char *string_array[] = { "foo", "bar", "baz" };

 int string_array_length =

 sizeof string_array / sizeof *string_array;

 if (is_sorted(string_array, string_array_length,

 sizeof *string_array, string_compare)) {

 printf("string_array is sorted\n");

 } else {

 printf("string_array is not sorted\n");

 }

 qsort(string_array, string_array_length,

 sizeof *string_array, string_compare);

 if (is_sorted(string_array, string_array_length,

 sizeof *string_array, string_compare)) {

 printf("string_array is sorted\n");

 } else {

Chapter 6 Working with Arrays

154

 printf("string_array is not sorted\n");

 }

 return 0;

}

For our final trick, we get slightly more ambitious and implement our own generic

sorting algorithm. We have everything we need to put together an insertion sort—we can

compare and swap objects—so it will be a simple task.

Insertion sort works by iterating through the input, keeping a sorted list of the

elements it has seen so far on the left of the array. In each iteration, it moves the next

element to its correct position in the sorted list on the left by swapping with its left

neighbor as long as it is larger than the element itself. The swapping code we already

have, but we can pull it out into a function to make the code more readable.

void swap(void *a, void *b, size_t obj_size)

{

 char tmp[obj_size];

 memcpy(&tmp, a, obj_size);

 memcpy(a, b, obj_size);

 memcpy(b, &tmp, obj_size);

}

The main algorithm is equally simple. Go through the elements in the input and

swap them down. We can start at index 1 because the first element is already sorted—

an array of one element is sorted by default. The swap_down() function should take a

pointer to the beginning of the array, so it knows when to stop swapping the object it

should swap down—which we must compute the address of—and the object size and

comparison function, so we can work with generic data. Computing the address of the

element means moving i times the size of the objects to the right of the start of the array.

void insertion_sort(void *array,

 size_t len, size_t obj_size,

 compare_function cmp)

{

 char *start = array;

 for (int i = 1; i < len; i++) {

 swap_down(start, start + i * obj_size, obj_size, cmp);

Chapter 6 Working with Arrays

155

 }

}

In the final function, we need a pointer to the current element and the previous

element, the one to its left. We get the second by subtracting obj_size from current. We

use the comparison function to compare the two elements, and if the current is greater

than or equal to the previous, we are done. Then we have found its correct position.

Otherwise, we swap the two elements and decrement the current pointer. We can do this

by setting it to the previous pointer.

void swap_down(char *start, char *current,

 size_t obj_size,

 compare_function cmp)

{

 while (current != start) {

 char *prev = current - obj_size;

 if (cmp(prev, current) <= 0) break; // done swapping

 swap(prev, current, obj_size);

 current = prev;

 }

}

Except for explicitly computing the positions in the array, working with generic data

through void pointers is not more challenging than working with typed arrays. There is

a little more computing, and there is no type-checking of the input when it goes through

void pointers, but other than that it is rarely a huge obstacle.

Chapter 6 Working with Arrays

157
© Thomas Mailund 2021
T. Mailund, Pointers in C Programming, https://doi.org/10.1007/978-1-4842-6927-5_7

CHAPTER 7

Strings
Strings are little more than pointers to a sequence of characters, which we require is

terminated by the zero character '\0'. There is even less language support for strings

as a type than there is for arrays. You have syntax for creating literal strings, but beyond

that, a string is indistinguishable from any other pointer to char. That strings are zero-

terminated is a protocol, an expectation of functions that work with strings, but it is not

enforced by the language in any way or form.

With strings, you can define an immutable string using double quotes (immutable

because it is undefined what will happen if you try to change a character in it). Such

strings are constants in your program’s executable and usually stored in read-only

memory. Even if they are not, however, you shouldn’t invoke undefined behavior by

modifying one—entering undefined behavior territory should never be done lightly.

Once you have defined such a string, however, what you have is merely a pointer to

char (although if you define it with double quotes, you should use char const to be on

the safe side). You can treat a string as any other pointer and any char pointer as a string

if it points to a char sequence terminated by '\0'. There is absolutely no difference.

#include <stdio.h>

#include <string.h>

#include <assert.h>

int main(void)

{

 char const *string = "hello, world!\n";

 char const *cp = string;

 int n = strlen(string);

 for (int i = 0; i < n; i++) {

 assert(string[i] == cp[i]);

https://doi.org/10.1007/978-1-4842-6927-5_7#DOI

158

 assert(string + i == cp + i);

 assert(*(string + i) == *(cp + i));

 }

 return 0;

}

Including <string.h> here gives us the function strlen(). It doesn’t include a

“string type” or anything of the sorts.

�Strings as Sequences of Bytes
The way that C represents a string is as a pointer to a buffer of chars that are terminated

by the zero char, '\0'.1 If you create the string "hello, world\n" and assign it to the

pointer string, you get a block of memory that contains the bytes of the strings, one

by one, and string will point to the first of them; see Figure 7-1. C doesn’t store any

information about the size of the string, but you can always find the end of the string

by searching for the zero bytes. C’s standard library already has a function for this,

strlen(), but we might learn something from implementing our own.

1�This character is sometimes called NUL, but do not confuse it with NULL, which is the null
pointer. This is a character that holds the value zero, but has nothing to do with pointers in itself.

Chapter 7 Strings

159

A straightforward approach to compute a string’s length is to run through the string

using an index, until the value at that index is zero. The length of the string is then the

index we got to.

int strlen_index(char const *s)

{

 int i = 0;

 while (s[i])

 i++;

 return i;

}

In the while-loop, we exploit that any non-zero char is considered true and only the

zero char is false.

An alternative approach is to run through the string with a pointer into it—which is

really just the same thing except that we do not compute the offset +i in each iteration.

When we reach a zero char, we point to the end of the string. The length of the string is

the number of bytes between the two pointers, and we can get that by subtracting the

beginning from the end.

Figure 7-1.  Memory layout for “hello, world\n”

Chapter 7 Strings

160

int strlen_pointer(char const *s)
{
 char const *x = s;
 while (*x)
 x++;
 return x - s;
}

Subtracting one pointer from another is a case of pointer arithmetic, as we discussed
in Chapter 5. When you subtract pointers, you ask for the distance in between them in
steps of the size of the underlying object. In strlen_pointer(), x points some bytes
higher than s—the number of non-zero characters we iterated past, and s - x gives us
that number; see Figure 7-2.

Both our functions and the standard library strlen() return the number of bytes up
to the null byte, but do not include it. A string always takes up at least one more byte than
its length so it can terminate with the '\0' byte. It is a common mistake in C to forget to
set aside that one extra byte. Now you know why you have to do this.

Let us take another string operation, copying a string. The standard library has
strcpy(), but we can write our own. The function, like strcpy(), will take two
arguments: a buffer that we copy the string into and a pointer to the string we have to
copy from. I call the first argument a buffer, rather than a string, even though they are
both char pointers because we do not know if the first one is a string. It is only a string
if it points to a sequence of bytes that is terminated by the zero character '\0'. That is
not required for the first argument of the function, unlike the second argument. I will

Figure 7-2.  String length via pointer arithmetic

Chapter 7 Strings

161

generally call a char * pointer a buffer if we do not require that it is zero-terminated and
we intend to write into it, but call it a string when we assume that it is zero-terminated.
The buffer must be large enough to hold the copied string plus the termination byte.
That means that it must have room for the string plus the zero byte. When we use
strlen() or our own variants to get the length of a string, we do not include the terminal
character, but if we are to store a string in a buffer, we must include it to turn the buffer
into a string at the end. The input thus has to look like the top row in Figure 7-3.

The standard library’s strcpy() returns a string—the destination (first argument)
buffer. I have never been in a situation where that was useful, but often been in the
situation where I wanted to know where the copying finished—the point where the
terminal zero was inserted. If, for example, I want to concatenate strings, I want to
continue copying from the point where the last copy finished. So I suggest that our

copying function returns that pointer instead of its first argument.

We can copy the string using this approach. We point a pointer at the beginning of

both the input and the output and call the pointers x and y, respectively. We have more

input as long as x points at a non-zero byte, and we can test that by testing if *x is true.

When we write *x, we get what x points at, and it will be false if and only if that is the zero

Figure 7-3.  Copying a string

Chapter 7 Strings

162

byte. Then, in a loop, we move both x and y through the sequence of chars. The x pointer

runs along the input and the y pointer along the output buffer. At each step, we copy

what x points to, *x, into the location that y points to, *y. When *x is the zero byte, we

terminate the loop, but we haven’t copied the last byte into the output buffer then, so we

handle that as the last step of the function. See the bottom half of Figure 7-3.

#include <stdio.h>

#include <string.h>

char *string_copy(char *output, char const *input)

{

 char const *x = input;

 char *y = output;

 for (; *x ; x++, y++)

 *y = *x;

 *y = '\0';

 return y;

}

int main(void)

{

 char const *string = "hello, world\n";

 int n = strlen(string);

 char buffer[n + 1];

 string_copy(buffer, string);

 printf("%s", buffer);

 return 0;

}

The variable we declare in main() is not a string. It is an array, and it gives us a

sequence of n + 1 char values. It functions as a char * pointer, but it is not terminated

with the zero character, '\0', and so it is not string. If you put the zero character

anywhere in there, you have a string; the buffer is allowed to be longer than where the

string terminates, but not shorter.

char buffer[n + 1];

Chapter 7 Strings

163

In this code, we compute the length of string and add one to it when we allocate the

buffer. This is to make room for both the string and the terminal char. Since the buffer

length depends on a runtime variable, it is a variable length array, and these, as we saw

in Chapter 5, might not be supported by your compiler. If your compiler complains

about the preceding code, replace the definition with

char buffer[14];

The string "hello, world\n" has length 13, so it is 14 when we add '\0'.

Another and more succinct way to implement the copying is to use the input and

output pointers directly. Inside the function, they are just usual arguments. We will not

modify the pointers that were arguments to the function any more than we would modify

any other argument to a function as seen from the calling side. In this code, you will not

expect the main() variable x to change just because you change the x in f(). Likewise,

you should not expect a pointer to change if you modify it inside a function.

void f(int x)

{

 x += 1;

}

int main(void)

{

 int x = 2;

 f(x);

 // x is still 2

 return 0;

}

So, we can move output and input along the buffer/string and copy the bytes that

way. In the following while-loop, we increment the pointers and copy the byte in the

same statement. When you write *input++, you read the byte at the address first, to get

its value, and then you move the pointer one step forward. Likewise, when you write

*output++ on the left-hand side of the assignment, you assign the byte to the current

address before you move the pointer. This code does a lot on a few lines, and to the

novice, it might be hard to read, but it is a very C-like way to write this function. With a

little experience, it becomes second nature to both read and write code such as this:

Chapter 7 Strings

164

char *string_copy(char *output, char const *input)

{

 while (*input) {

 *output++ = *input++;

 }

 *output = '\0';

 return output;

}

We still have to assign the zero byte at the end of the output as a separate statement,

but we can avoid this with a slight change. If we first do the copy and then the test for the

zero byte, we have already handled it when we leave the loop. Such a solution could look

like this:

char *string_copy(char *output, char const *input)

{

 while ((*output = *input)) {

 output++; input++;

 }

 return output;

}

In the while-loop test, we do an assignment. If you take an assignment and look

at its value, it is the object that you assigned, in this case, the byte we copied. So the

assignment is true until we copied the zero byte, where it becomes false. That is what we

want. The body of the while-loop just increments the pointers.

You could also use the do-while construction to achieve the same:

char *string_copy(char *output, char const *input)

{

 do {

 *output++ = *input;

 } while (*input++);

 return output;

}

Here, we always assign before we test and increment the input, so we will have

assigned the termination character before we terminate the loop.

Chapter 7 Strings

165

If you want to go completely bananas, you can compact the function into this:

char *string_copy(char *output, char const *input)

{

 while ((*output++ = *input++)) ;

 return output;

}

Here, we combine the “assign and increment” approach from two versions ago with

the “test the assignment” from the previous version. This is a very C way to write the

function and something you are likely to see in the wild. To me, though, it is a little too

much, but your mileage might vary.

�Integers to Strings
For the next example, we will try to run backward through a string. We will write a

function that creates the string representation of an integer. The idea is this: if you have

an integer n, you can get the last digit as n % 10, the remainder when you divide by ten.

This is not surprising; this is exactly what the last digit is. Then you can integer-divide n

by ten, so the second last digit, the “tens” in the number, moves down to the last digit,

the “ones.” Now you can get that digit by taking the remainder again. You can repeat

taking remainders and dividing until you have gone through all of n’s digits, when the

number you have left is zero, and then you are done.

See Figure 7-4 for an example. There, we start with the number 314, and we want to

write it into the string pointed to by string. With the strategy we have chosen, we have to

do this starting from the last digit, so we put a pointer to the position in the string where

that should go (after putting a zero byte at the position one after to terminate the string).

We will handle zero, negative, and positive numbers as different cases. The figure only

describes the case for positive numbers, but see later for the other cases. For a positive

integer n, the number of digits to represent it is ⌊log10 n⌋ + 1. It is also ⌈log10 (n + 1)⌉ , and

that will also work for n = 0, but our algorithm won’t work for zero; we need to handle

zero explicitly, so I will stick with the first calculation. In C, it is the expression (int)

log10(n) + 1. When we start, we move a pointer, s, so it points (int)log10(n) + 1 + 1

past the string pointer; we insert the zero byte there and move it one to the left. Then

we start the algorithm. We compute n % 10, insert it at *s, divide n by 10, and move s

one step to the left. We repeat this until we are done.

Chapter 7 Strings

166

We do not want to insert n % 10 directly into *s. That is an integer, and *s is

a character, and the characters for the digits are unlikely to have the same integer

values—they do not in any encoding I am aware of. We need to translate the number

into a character, but fortunately that turns out very easy. If you have a string digits =

"0123456789", then you find digit 'i' and index digits[i], for example, digits[0] ==

'0' and digits[5] == '5'.

If you are using the ASCII character encoding, which you most likely are, then the

digits have values such that digit ‘1’ has integer value 0+ 1, digit ‘2’ has integer value 0+ 2,

digit ‘3’ has integer value 0+ 3, and so on. So you can also get the digit as

'0' + (n % 10);

but I find an expression such as

digits[n % 10];

easier to read myself.

We can implement it like this:

int no_digits(int n)

{

 assert(n > 0);

 return (int)log10(n) + 1;

}

void pos_int_to_string(int n, char *s)

{

 assert(n > 0);

 // Go to the last position and zero-terminate

 s += no_digits(n);

 *s-- = '\0';

Figure 7-4.  Translating the integer 314 into a string

Chapter 7 Strings

167

 // Move backwards and insert digits

 char const *digits = "0123456789";

 while (n) {

 *s-- = digits[n % 10];

 n /= 10;

 }

}

As the name pos_int_to_string() suggests, however, it only works for positive

integers. For zero, we will never enter the while-loop, and for negative numbers, we will

need to add a minus at the beginning of the string.

This is easily fixed; we simply handle the three different cases:

void int_to_string(int n, char *s)

{

 // If n is zero, write zero and we are done

 if (n == 0) {

 s[0] = '0'; s[1] = '\0';

 return;

 }

 // If it negative, write a minus at the front of the

 // string and translate the problem into the case

 // for positive nubers.

 if (n < 0) {

 *s++ = '-'; n = -n;

 }

 pos_int_to_string(n, s);

}

There is one more special case, however, and it relates to how numbers are likely

represented on your computer. Unless you work on very exotic hardware, negative

numbers are represented in the so-called two’s complement, and there you do not have

the same number of positive and negative numbers. There is one more negative number,

the smallest you can represent, and if n is that number, then -n cannot be held in an

int. We can add that as yet another special case or simply observe that the algorithm we

have works just fine for negative numbers as well and change pos_int_to_string() into

Chapter 7 Strings

168

neg_int_to_string(). If we change the sign for positive numbers, we know that we can

hold the value of -n. For each positive number, we can hold the corresponding negative

number (and one more).

This, unfortunately, gives us yet another problem. Will our troubles never end? If n

is negative, then no_digits() doesn’t work. And of course, we cannot simply call no_

digits() with -n because that will take us right back to the problem we just had!

It isn’t hard to compute the number of digits, though. In the algorithm, we insert

digits as long as n is non-zero, so we can compute the number of digits the same way,

without spending substantially longer time than we do on creating the string.

int no_digits(int n)

{

 int digits = 0;

 for (; n ; n /= 10)

 digits++;

 return digits;

}

void neg_int_to_string(int n, char *s)

{

 assert(n < 0);

 char const *digits = "0123456789";

 for (; n ; n /= 10) {

 *s-- = digits[-(n % 10)];

 }

}

void int_to_string(int n, char *s)

{

 if (n == 0) {

 s[0] = '0'; s[1] = '\0';

 return;

 }

 if (n < 0) *s++ = '-';

 if (n > 0) n = -n;

 s += no_digits(n);

Chapter 7 Strings

169

 *s-- = '\0';

 neg_int_to_string(n, s);

}

Of course, if we don’t know the length of the string we construct, and we do not want

to spend time computing it, we can just create the string in the wrong order. We know

how to reverse a string because we have implemented reversal of arrays before, and

strings behave the same way:

void reverse_string(char *s)

{

 if (*s == 0) return;

 char *left = s;

 char *right = s + strlen(s) - 1;

 for (; left < right; left++, right--) {

 char c = *left;

 *left = *right;

 *right = c;

 }

}

void neg_int_to_string_rev(int n, char *s)

{

 assert(n < 0);

 // We need to remember the beginning for reversal

 char *front = s;

 char const *digits = "0123456789";

 for (; n ; n /= 10) {

 *s++ = digits[-(n % 10)];

 }

 // Reverse the string to get the right order

 *s = '\0';

 reverse_string(front);

}

Chapter 7 Strings

170

The if (*s == 0) check in reverse is to avoid empty strings. If we have one, we

would point one to the left of the first address, and we are not allowed to do that. It is

easy and quick to test, so we might as well avoid a problem that, although highly unlikely

to ever be an issue, is nevertheless there.

Since we already have a pointer to both the beginning and the end of the string of

decimals, we might as well exploit this and not use strlen() to get the end of the string

we reverse, so you could also write it as

void reverse_string(char *left, char *right)

{

 if (right <= left) return; // avoid rigth underflow

 right--; // move to the first included character

 for (; left < right; left++, right--) {

 char c = *left;

 *left = *right;

 *right = c;

 }

}

void neg_int_to_string_rev(int n, char *s)

{

 assert(n < 0);

 // we need to remember the beginning for reversal

 char *front = s;

 char const *digits = "0123456789";

 for (; n ; n /= 10) {

 *s++ = digits[-(n % 10)];

 }

 *s = '\0';

 reverse_string(front, s);

}

But let us now attempt a different approach, where we also do not compute the

number of digits beforehand. If we do not know the number of digits we end up with, we

don’t know where the last digit should go when we start, but we know where a single-

digit number should go—precisely at the position our string points at. So we can deal

with integers greater than -10 (and smaller than zero; recall that we are now working on

Chapter 7 Strings

171

negative numbers). We can get the digit that we want by looking up in digits at
index -(n % 10). The integer n % 10 is numerically smaller than the smallest integer—it
is a single-digit integer, after all, so we know that we can also represent the corresponding
positive integer, -(n % 10), so we have no risk of overflow here. But if n is smaller than or
equal to -10, we first need to insert all the digits in n / 10 before we can insert the last. If
we implement the algorithm recursively, and require that the recursive calls give us the
position in the string where the next digit should be inserted, then we can insert all the
preceding digits recursively and insert -(n % 10) at the position the recursion gives us.
That solution can look like the following code, and an execution is shown in Figure 7-5:

char *neg_int_to_string(int n, char *s)
{
 assert(n < 0);
 char const *digits = "0123456789";
 if (n <= -10) {
 s = neg_int_to_string(n / 10, s);
 }
 *s = digits[-(n % 10)];
 return s + 1;

}

Figure 7-5.  Inserting digits with the recursive algorithm

Chapter 7 Strings

172

In int_to_string(), we handle zero explicitly, insert a minus if we have a negative

number, change a positive to a negative number (without the - of course), and then use

the neg_int_to_string() function to get the digits. When we are done, the int_to_

string() function has the position behind the last digit, and it terminates the string by

putting '\0' there:

#include <stdio.h>

#include <math.h>

char *neg_int_to_string(int n, char *s)

{

 assert(n < 0);

 char const *digits = "0123456789";

 if (n <= -10) {

 s = neg_int_to_string(n / 10, s);

 }

 *s = digits[-(n % 10)];

 return s + 1;

}

void int_to_string(int n, char *s)

{

 if (n == 0) {

 s[0] = '0'; s[1] = '\0';

 return;

 }

 if (n < 0) *s++ = '-';

 if (n > 0) n = -n;

 s = neg_int_to_string(n, s);

 *s = '\0';

}

int main(void)

{

 int n = 11;

 int digits = log10(n) + 1;

 char buf[digits];

Chapter 7 Strings

173

 for (int i = -n; i < n; i++) {
 int_to_string(i, buf);
 printf("%d = '%s'\n", i, buf);
 }

 return 0;
}

If you don’t want the recursion to return the next pointer, you can update it in the
calls instead; you just need to pass a pointer to the string pointer so you can change it.

void neg_int_to_string(int n, char **s)
{
 assert(n < 0);
 char const *digits = "0123456789";
 if (n <= -10) {
 neg_int_to_string(n / 10, s);
 }
 *(*s)++ = digits[-(n % 10)];
}

void int_to_string(int n, char *s)
{
 if (n == 0) {
 s[0] = '0'; s[1] = '\0';
 return;
 }

 if (n < 0) *s++ = '-';
 if (n > 0) n = -n;
 neg_int_to_string(n, &s);
 *s = '\0';
}

We started out with a relatively simple function that constructs a string in reverse
order and then got another approach that inserted the digits from left to right. But we did
not end up with a repeat of the examples in the two previous sections. Rather, we saw
how we can recursively move the destination pointer when we have an algorithm that
works from right to left, but we have to implement it going from the left to the right. The

recursive calls move the pointer along, so we have the right location when we need it.

Chapter 7 Strings

174

There is nothing here that you couldn’t do with indices as well. You would have to

provide both the string and an index to the recursive functions and update the index

as you move through the string. Besides that, the solution is exactly the same. I find the

pointer solution more elegant myself, though, and we only need one function argument

to keep track of the string and where we should insert digits.

�Run-Length Encoding
In this section, we will write a program for run-length encoding. Run-length encoding

has its origin in lossless compression and is the simple idea that if you have a sequence

with long runs of the same data, then you can replace the run with a number that tells

you the length of the run and then one instance of the data object. For strings, the run-

length encoding of

"aaaabbbbbbbaabbbcbbccccc"

would be

"4a7b2a3b1c2b5c"

The original string starts with four a’s, then it has seven b’s, then two a’s again, and so

on.

It is not always the best of ideas to compress a string with run-length encoding. If

you have no runs of more than one repetition, you are adding one digit in front of every

single input character, and you end up with a string that is twice as long as you started

with. But that is something for compression people to worry about; we are focusing on

pointers, and we can use char pointers to get a simple and efficient implementation of a

run-length encoding algorithm. The following program is all it takes:

#include <stdio.h>

#include <string.h>

#include <assert.h>

char const *skip(char const *x)

{

 assert(*x != '\0');

 char c = *x;

 while (*x == c) x++;

Chapter 7 Strings

175

 return x;

}

void runlength_encode(char const * restrict input,

 char * restrict output)

{

 while (*input) {

 char c = *input;

 char const *next = skip(input);

 int length = next - input;

 output += sprintf(output, "%d%c", length, c);

 input = next;

 }

}

int main(void)

{

 char const *x = "aaaabbbbbbbaabbbcbbccccc";

 char buffer[2 * strlen(x) + 1];

 runlength_encode(x, buffer);

 printf("%s\n", buffer);

 return 0;

}

The function skip() returns the pointer beyond the input x, where we can find a

character different from *x (or x[0]). We are not allowed to call it when x points at the

last character in the string, identifiable by x pointing to the zero char. If we did, the

function would start looking at bytes beyond the string, and there is no way to know

how the runtime system will react to that. So we assert() that the first character is not

'\0', and then we move x along until we see the first character that is different from the

previous. We will always find one if the input is zero-terminated, so eventually the loop

ends, and we return the new position.

If we call skip() on a string, x, we get a pointer at some offset beyond x. That offset is

the number of repeats of x[0] at the beginning of x. So for the run-length encoding, the

repeat count is skip(x) - x. The difference between the two pointers is the number of

characters between them.

Chapter 7 Strings

176

In the runlength_encode() function, we use two pointers, one pointing into the

input at where the next run of character is found and one pointing into the output at

where we should write the next encoding. These must not point to overlapping buffers.

You cannot encode a string into itself because the encoding can get longer than the

string itself. If you try to run the function with the same string as both input and output,

you risk overwriting your input before you need it. I have tried making that explicit by

qualifying the pointers as restrict, but the compiler will not check that for you. If you

call the function with overlapping buffers, you could be in trouble.

We get the character for the next run from *input, and then we use skip() to figure

out how long the next run is:

char c = *input;

char const *next = skip(input);

int length = next - input;

We write the encoding to output, and here we use the sprintf() function from

stdio.h. This function works like printf() but writes the formatting text to a buffer.

That buffer is our output—that is where we want the encoding to go. sprintf() returns

the number of characters excluding the zero terminal (it does terminate the string, but

the return value is excluding it). That is what we want. We want to put the next encoded

run right after the previous, and we do not need to zero-terminate the output until

we have written the entire encoding. We need to move output past the encoded run,

however, and here we exploit that sprintf() will return the number of characters it

wrote into the buffer. If we increase output by this amount, it points at the first character

past the ones we just wrote.

output += sprintf(output, "%d%c", length, c);

Now we have written the encoding of the repeat of the character that input points

at and moved output to the next location where we can write an encoding, so what

remains is to move input to the next run of characters. That is where next points after we

skipped, so the last step in the loop is

input = next;

Once we have looped through the entire input, the output must be zero-terminated,

but because sprintf() already does this—it just doesn’t return the length of that

additional character—we are good to return.

Chapter 7 Strings

177

If this seemed simple to you, then you have now gotten the hang of how character

pointers work to implement strings.

�Finding Words
Now imagine that we want to iterate through all the words in a string. For simplicity,

define a word to be anything that starts with a letter and consists only of letters. The

function isalpha() in C’s standard library (you included it with the header <ctype.

h>) checks if a character is a letter. We can define these two functions to skip through a

word—that is a sequence of letters—and to find the next word from where we currently

are, that is, search until you find the next letter.

char *skip_word(char *x)

{

 while (*x && isalpha(*x))
 x++;

 return x;
}

char *find_word(char *x)

{

 while (*x && !isalpha(*x))
 x++;

 return x;
}

We want to iterate through all the words in a string, and we can do this by repeatedly

calling the two functions.

#include <stdio.h>
#include <ctype.h>

char *skip_word(char *x)

{

 while (*x && isalpha(*x))
 x++;

 return x;

}

Chapter 7 Strings

178

char *find_word(char *x)

{

 while (*x && !isalpha(*x))
 x++;

 return x;
}

int main(void)

{

 char const *words = "\tfoo! bar\n\tbaz qux\n";

 char *x = find_word((char *)words);

 while (*x) {
 printf("Current position: '%s'\n", x);

 x = find_word(skip_word(x));

 }

 return 0;
}

I define words to be char const *, but the functions work with char *. I did not do

this merely to confuse the reader. I want the functions to work with char * because a

user of them might want to modify the string they search for words in. If they return a

char const *, the user would need to cast the type every time the user calls them. If we

return char * but take a char const * as input, then we would need to cast the return

type, and we would be violating the promise we make when we say that we do not allow

the input to be modified. That is why I don’t want the two search functions to work on

constant strings. Why then do I define word to be constant? I don’t have to; I could define

it as char *. C would allow me to, but it isn’t safe, and that is the second point I want to

make now.

If you modify a literal string—one you define inside your program by putting a string

in double quotes—anything can happen. The C standard allows you to assign them

to non-constant char pointers for historical reasons, but you should always consider

them constants. Your literal strings are compiled into your program, and most operating

systems will not allow you to modify the area of memory where your program sits when

you run it. You can check what your operating system will do if you modify a literal string

by running this program:

#include <stdio.h>

Chapter 7 Strings

179

int main(void)

{

 char *string = "foo";

 string[1] = 'O'; // Changing foo to fOo?

 printf("Succes! string is now '%s'\n", string);

 return 0;
}

Even if you get away with it, though, you shouldn’t rely on mutable literal strings. On

other platforms, trying to change one will likely crash the program.

Literal strings are consecutive bytes terminated by zero, just as any other string, but

you should always consider them const. And as for any other const type, modify them at

your own risk. Unfortunately, C considers them non-const when it type-checks, but that

is how it is. Just because C does this doesn’t mean that you should. Declare them const. If

you need to modify a string you define in your program, then you need to make a copy first.

Do not worry about strings you define as char arrays and copy into. What we did with

the preceding string_copy() examples is always safe. It is only literal strings you have to

worry about and only because the type-checker doesn’t enforce that they are constants. If

you always declare them char const *—and don’t cast when you shouldn’t—then you are

safe. Yes, I know we cast the string in the preceding program, so we could iterate through

the words, but in this particular case, it is okay; we don’t modify the string, and that is what

matters. If you are careful, you are sometimes allowed to cheat the type-checker.

We have a fine program for iterating through the words in a string, but I think we

can improve on it slightly. When we need to iterate over something, I prefer to use the

iterator design pattern. This pattern suggests that we should have some representation of

the iteration that we can use as an object to get through the elements. Typically, it means

that we need to set up the object, initializing the iterator, we have a way to ask for the

next element, and we have a way of recognizing that we have seen all the elements.

In some cases, we also need to free resources held by the iterator object after we are done

with it. We don’t need the full pattern for this small example, but I would like to have at

least the part where I set up an iterator and where I ask for the next word. Calling find_

word(skip_word(x)) to get the next word doesn’t exactly scream that we are asking

for the next word in a sequence—we need to understand what those two functions do

before we know that. And checking *x to see if there are more words is not an explicit test

for iteration termination either.

Chapter 7 Strings

180

I would prefer something that looks like this:

for (char *iter = first_word((char *)words);

 iter != WORD_ITER_END;

 iter = next_word(iter)) {

 printf("Current position: '%s'\n", iter);

}

This is how the iterator design pattern is implemented in the C++ standard library,

and it matches C well—not entirely because we do not have destructors to help us

deallocate resources, but frequently enough that it is worthwhile to look to C++ for

ideas. If we implement a function that gives us the first word, first_word(), and then

one that provides us with the next_word() later, we can get the words. With for-loops,

we typically terminate once we are one past the last element, so if we can make the

iterator return an object that indicates this, WORD_ITER_END here, then we know when to

terminate the loop. We cannot always get it this way—we cannot overload comparisons

in C, but we can often get something we can use.

The iterator will be a char * pointer, and we will terminate when it is the NULL

pointer. We can compare a char * to NULL, and since a valid word is never the NULL

pointer, it is not something we can confuse for a real word. If the iterator isn’t NULL, it

should point at the next word. All we need to do to implement the design pattern is to

find the first word when we initialize the iterator:

// NULL pointer instead of pointer to zero terminal

#define NULLIFY(x) ((*x) ? (x) : 0)

#define WORD_ITER_END 0

char *first_word(char *x)

{

 return NULLIFY(find_word(x));

}

and when we ask for the next word, we skip the current word and find the next—same as

we did explicitly in the previous version.

char *next_word(char *x)

{

 return NULLIFY(find_word(skip_word(x)));

}

Chapter 7 Strings

181

The macro NULLIFY() turns a pointer to the zero char into a NULL pointer, so we can

recognize when we have moved past the last word.

Whether you find it worthwhile to add design patterns to such a tiny program is

mostly a matter of taste. I probably wouldn’t if this was all I needed to do with the code.

But I think you will agree that it didn’t take much extra code to make it explicit in the

code that we start from the first word and continue taking the next word until we are

done. I don’t think find_word(skip_word(x)) is quite as obvious; at least I do not think

it would be as obvious six months later when I need to debug my code.

The full program, with the iterator, now looks like this:

#include <stdio.h>

#include <ctype.h>

char *skip_word(char *x)

{

 while (*x && isalpha(*x))

 x++;

 return x;

}

char *find_word(char *x)

{

 while (*x && !isalpha(*x))

 x++;

 return x;

}

// NULL pointer instead of

// pointer to zero terminal

#define NULLIFY(x) ((*x) ? x : 0)

#define WORD_ITER_END 0

char *first_word(char *x)

{

 return NULLIFY(find_word(x));

}

Chapter 7 Strings

182

char *next_word(char *x)

{

 return NULLIFY(find_word(skip_word(x)));

}

int main(void)

{

 char const *words = "\tfoo! bar\n\tbaz qux\n";

 for (char *iter = first_word((char *)words);

 iter != WORD_ITER_END;

 iter = next_word(iter)) {

 printf("Current position: '%s'\n", iter);

 }

 return 0;

}

Straying away from the main topic, pointers, we can expand on the iterator pattern a

little here. Our word iterator works through two functions, one that finds the beginning

of a word and one that finds the end of a word. The iterator interface is a “first” function

and a “next” function. Writing the iterator functions if we have the find and skip function

is trivial. If we wanted to iterate over integers in a string, we could implement it like this:

char *find_integer(char *x)

{

 while (*x && !isnumber(*x))

 x++;

 return x;

}

char *skip_integer(char *x)

{

 while (*x && isnumber(*x))

 x++;

 return x;

}

char *first_integer(char *x)

Chapter 7 Strings

183

{

 return NULLIFY(find_integer(x));
}

char *next_integer(char *x)

{

 return NULLIFY(find_integer(skip_integer(x)));
}

#define INTEGER_ITER_END 0

The isnumber() function, also from <ctype.h>, checks if a character is a digit (plus

additional characters that should be interpreted that way in the local configuration).

The only difference between the two iterators is the names we give the functions and the

function we use to recognize the character class, so we could generate the code using

templates. If we already have a find and skip function, we could use this macro:

#define GEN_FIND_SKIP_ITER(name, find, skip) \
char *first_##name(char *x) \
{ \
 return NULLIFY((find)(x)); \
} \
char *next_##name(char *x) \
{ \
 return NULLIFY((find)((skip)(x))); \
}

You would then generate the word iterator this way:

GEN_FIND_SKIP_ITER(word, find_word, skip_word)

We can equally easy create the find and skip functions:

#define GEN_FIND_SKIP(name, type) \
char *skip_##name(char *x) \
{ \
 while (*x && (type)(*x)) \
 x++; \
 return x; \

} \

Chapter 7 Strings

184

char *find_##name(char *x) \

{ \

 while (*x && !(type)(*x)) \

 x++; \

 return x; \

} \

where we could generate the integer find and skip like this:

GEN_FIND_SKIP(integer, isnumber)

Getting all the functions in one go can be done with this macro:

#define GEN_ITER(name, type) \

GEN_FIND_SKIP(name, type) \

GEN_FIND_SKIP_ITER(name, find_##name, skip_##name)

It makes sense to have both GEN_ITER() and GEN_FIND_SKIP_ITER() since we might

have more complex find and skip functions than those we generate with GEN_FIND_

SKIP(). Still, with the GEN_ITER() macro, we can easily create iterators for various types.

For example, if we want an iterative over words, those identified by isalpha(), then we

write

GEN_ITER(word, isalpha)

and if we want an integer iterator, we write

GEN_ITER(integer, isnumber)

Where we used the preceding word iterator, we had WORD_ITER_END to indicate

when we had reached the end. Generally, we need an indicator that depends on what

we iterate through, but since our iterator code will always give us a NULL pointer when

there are no more elements, we can just check for that. There is nothing wrong with that

solution. So iterating through both words and numbers is quickly done, with the same

design pattern code:

#include <stdio.h>

#include <ctype.h>

// NULL pointer instead of pointer to zero terminal

#define NULLIFY(x) ((*x) ? x : 0)

Chapter 7 Strings

185

#define GEN_FIND_SKIP_ITER(name, find, skip) \

char *first_##name(char *x) \

{ \

 return NULLIFY((find)(x)); \

} \

char *next_##name(char *x) \

{ \

 return NULLIFY((find)((skip)(x)));

} \

#define GEN_FIND_SKIP(name, type) \

char *skip_##name(char *x) \

{ \

 while (*x && (type)(*x)) \

 x++; \

 return x; \

} \

char *find_##name(char *x) \

{ \

 while (*x && !(type)(*x)) \

 x++; \

 return x; \

}

#define GEN_ITER(name, type) \

GEN_FIND_SKIP(name, type) \

GEN_FIND_SKIP_ITER(name, find_##name, skip_##name)

GEN_ITER(word, isalpha)

GEN_ITER(integer, isnumber)

int main(void)

{

 char const *x = "\tfoo! 1231 bar\n\tbaz qux12\n";

 for (char *iter = first_word((char *)x);

 iter;

Chapter 7 Strings

186

 iter = next_word(iter)) {

 printf("Current position: '%s'\n", iter);

 }

 for (char *iter = first_integer((char *)x);
 iter;

 iter = next_integer(iter)) {

 printf("Current position: '%s'\n", iter);

 }

 return 0;
}

�Compacting Words
We can take another approach to get the words in a string, where we do not extract them

one by one, but rather rewrite the string, so we have the words separated by a single

space. It doesn’t give us an easier way to iterate through them, but it gives us an excuse to

explore strings and pointers a little more.

So, the goal is to take a string such as

"\tfoo! bar\n\tbaz qux\n";

and turn it into

"foo bar baz qux"

If we have a pointer to the input, from, and a pointer to where we want the output, to,

then we can copy the words, skipping everything else, like this:

void copy_words(char *from, char *to)

{

 from = find_word(from);

 while (*from) {
 copy_word(&from, &to);

 from = find_word(from);

 if (*from) *to++ = ' ';
 }

 *to = '\0';

}

Chapter 7 Strings

187

where find_word() is the function from the previous section and copy_word() is

explained in the following. The idea is this: we move from to the start of the first word.

Then, as long as there is more input, that is, from doesn’t point to the zero byte, we copy

the next word into to, and then we advance from to the next word. If there are more

words, from will point to a letter—if find_word() doesn’t find a letter, the string it returns

points to the zero byte (examine the source code for the preceding function if you

wonder why that is). In that case, we need a space in the output. When we do *to++ =,

we put a space at the position that to points to and then advance it, so the next character

we insert in the output goes after the space. When we have exhausted the input, so *from

is zero, we must terminate the output string as well, and we do that by putting a zero at

the location that to now points to.

The copy_word() function should move a complete word from from to to. We can

implement it like this:

void copy_word(char **from, char **to)

{

 while (isalpha(**from)) {

 *(*to)++ = *(*from)++;

 }

}

The function is short, but it might require some deciphering. The input pointers

are pointers to strings, so pointers to pointers to char. It might seem more natural to

use pointers to char, but we want to advance both string pointers, so they point past

the word we copy, and if we used char * arguments, we could only advance the local

variables and not the pointers we call the function with. To advance the from and to

pointers in copy_words(), we need to give their addresses to copy_word(), which is

what we did. We called the function as copy_word(&from, &to), and it advances both

pointers past the next word.

Because from is a pointer to the string we scan through, we must dereference it

once to get the string and then again to get the character it points to, so it is **from that

is the character we must look at to determine if we have a letter or not; thus, we write

isalpha(**from).

Chapter 7 Strings

188

When we copy a character, we use *(*to)++ = *(*from)++. We dereference the

two arguments, *to and *from, to get the strings they point to, then do it again to get

the characters they point to, *(*to) and *(*from). We copy the character at *(*from)

to *(*to), and then we increment the pointers (*to) and (*from) using the ++ postfix

operator.

I swear that I didn’t write the code this way to obfuscate it. You can split the

operations into more steps, like this:

void copy_word(char **from, char **to)

{

 char *x = *from, *y = *to;

 while (isalpha(*x)) {

 *y = *x; x++; y++;

 }

 *from = x; *to = y;

}

but it is debatable how much it helps. There is one operation per statement; we either

check a character, make an assignment, or increment a pointer. But there are more

steps and more variables to keep track of. For an experienced C programmer, the first

version will be easier to read. There is much condensed into a few operations, but they

are idioms of the language. You get used to seeing something like *p++ and understand

that you are dereferencing a pointer and then moving it to the next position. Be careful,

though. While *p++ dereferences and then increments the pointer, (*p)++ increments

the object the pointer holds the address of. The increment operation, p++, has lower

precedence than the dereferencing, so the implicit parentheses are *(p++). Even if you

prefer to write your own code, so it looks like the second function, others will likely write

code that looks like the first. It is worthwhile to get used to this notation. Don’t overdo it,

of course, but incrementing or decrementing pointers, before or after you dereference

them, is something you will see all the time.

Back to copying words. The function copy_words() does what we want. Give it a

string to read the words from and a buffer to put the results in, and you get the words

in a space-separated string. But here’s the thing: you don’t need two strings if the input

string is one you are allowed to modify. Your input and output string can be the same. As

we scan along with the input, the pointer will never fall behind the output pointer. For a

while, the two pointers might point to the same location in the string, but if they do not,

Chapter 7 Strings

189

then from is ahead of to. So if we copy from the string into itself, we move bytes toward

the beginning when we remove non-letters and copy the words. We can write a function

that uses this idea:

void compact_words(char *s)

{

 copy_words(s, s);

}

If you call it with a string, you turn the string itself into the version with space-

separated words, and you do not use any extra memory to do it.

You can try it out with this program:

int main(void)

{

 // We modify the string we wordize, so we

 // cannot use a literate string. Those are immutable.

 // This initialises a mutable buffer instead. The

 // string is copied into the buffer, including the zero-

 // terminal, when the buffer is initialised.

 char string[] = "\tfoo! bar\n\tbaz qux\n";

 compact_words(string);

 printf("'%s'\n", string);

 return 0;

}

The string is modified when we call compact_words(), so I have used a stack-

allocated buffer instead of a literal string.

When we have an algorithm that gives us a reduced representation of the input, but

puts it in the same memory locations as input, we say that we compact the input, thus

the name of this section. We did the same thing in one of the examples of Eratosthenes’

Sieve in Chapter 6.

Chapter 7 Strings

190

�Buffer Overflow Errors
Buffer overflow is among the leading causes of software bugs and security holes, and

your compiler cannot help you much with warnings or errors. Buffer overflows are a

general class of errors where out-of-bounds errors in arrays are a subclass. An out-of-

bounds error occurs when you access data outside the memory range of an array. If you

define

int array[3];

then the legal locations you can look in the array are array[0], array[1], and array[2],

and you should not try to access entries before zero, array[-1], or after index 2,

array[3].

This appears obvious, and it is, yet it happens very often when the indices are not as

clear, for example:

char buf[n];

buf[n] = '\0';

Here, the intent is to define a character buffer and zero-terminate it. It looks correct

until you examine it closer. The buffer has length n, so you can index from 0 up to n-1,

but not index buf[n]. The same error happens here, where it might be even less

straightforward:

char const *s = "foobar";

char buf[strlen(s)];

strcpy(buf, s);

We make a buffer and copy s into it. But we forgot that strlen() gives us the length

of a string up to, but not including, the terminal zero byte. The size of the buffer should

be strlen(s) + 1 to make room for zero. It gets worse, of course, if you want to write

an unknown string into a buffer. With strcpy(), you will write beyond the buffer if the

string is longer than the buffer. You want to use the function strncpy() if you want to

safely copy strings of unknown length.

You also get into trouble if the string you copy from isn’t zero-terminated. Then

strcpy() will keep reading beyond the end of the input buffer, and then you will again

access data outside of the memory block you are allowed to index into.

Chapter 7 Strings

191

Buffer overflows often lead to security holes because they might allow an attacker to

change the data in a program and thus trick it into doing something it shouldn’t. Take a

simple example such as this:

bool validate_password(char const *password)

{

 bool valid_password = false;

 char buffer[10];

 printf("Password: ");

 gets(buffer);

 if (strcmp(password, buffer) == 0)

 valid_password = true;

 return valid_password;

}

We have a buffer that we read a string into, but we do not validate that the input is

shorter than the buffer. The buffer can hold 9 characters and the termination byte, but

if you type in a password that is 11 characters or longer, the program will write outside

the bounds of the buffer. If you are lucky, you access memory that the underlying

operating system and hardware know you are not allowed to, or the following strcmp()

call will read into such memory, and then the program crashes. But what happens if

valid_password sits right after the ten chars in buffer? Then their memory locations are

inside your program, and the hardware doesn’t see anything wrong in you accessing it.

If you type in 11 characters, gets() puts the first in buffer, the next in valid_password,

and then a terminal byte after that. The 11th character you write is probably not zero, so

valid_password changes its value from false to true.

I cannot give you a reproducible example of this. It is up to the compiler where it

puts the local variables, and while they are likely to be close to each other—they are both

on the stack—they won’t necessarily be laid out as I just described. If valid_password

comes before buffer, then overwriting buffer will not affect it. The point, however, is

that if your program writes outside the memory that you have allocated for an array, you

open yourself up for serious bugs, especially if you let a user give you input that you then

process without checking.

Chapter 7 Strings

192

If you have defined an array, that is, a block of memory, you can only safely access

that memory; access beyond it, via indices or pointers, and a whole host of bad things

can happen. If you are lucky, the memory outside the array is not yours to look at. The

operating system might not have given your program permission to access it, and then

if you do, it will immediately terminate your program. That is the best-case scenario.

Worse, you can read garbage data because you have expectations about the type of the

object you are looking at, and you probably make more assumptions based on that.

Those assumptions are not true when you look at an area of memory that could be

used for practically anything. The absolutely worst-case scenario is if you write outside

the array and your program doesn’t crash. Now you have most likely destroyed data

that is essential for the program somewhere else. Writing outside a buffer is a common

technique for hackers—they make a program overwrite variables and thereby trick the

program to change behavior.

Many of the functions from this chapter were vulnerable to these errors because

we didn’t check overflow. It requires slightly more code to do this, but it is not a major

undertaking. For example, to put a limit on how much we should be allowed to copy, we

can add a parameter for the length, decrease it for each byte we copy, and bail out if we

reach zero. With the run-length encoding example, we could use snprintf() instead of

sprintf(). That function takes an argument that tells it the max number of characters to

write, so we can ask it to copy up to the buffer length we have left. It returns how much it

should have copied (but it never copies too much), so if it returns a number larger than

we gave it, we know we are out of space, and we can finish encoding.

#include <stdio.h>

#include <string.h>

#include <stdbool.h>

#include <assert.h>

char const *skip(char const *x)

{

 assert(*x != '\0');

 char c = *x;

 while (*x == c) x++;

 return x;

}

Chapter 7 Strings

193

bool runlength_encode_n(char const * restrict input,

 char * restrict output, int n)

{

 while (*input) {

 printf("n == %d\n", n);

 char c = *input;

 char const *next = skip(input);

 int length = next - input;

 int used = snprintf(output, n, "%d%c", length, c);

 output += used; n -= used;

 if (n < 0) return false; // we couldn't write it all

 input = next;

 }

 return true; // Success

}

int main(void)

{

 char const *x = "aaaabbbbbbbaabbbcbbccccc";

 int n = 10;

 char buffer[n + 1];

 bool did_we_make_it = runlength_encode_n(x, buffer, n);

 if (did_we_make_it) {

 printf("We encoded the entire string.\n");

 } else {

 printf("We only got a prefix.\n");

 }

 printf("Encoding: %s\n", buffer);

 return 0;

}

For all the functions in the standard library that blindly copy or write strings, some

versions limit how much they write. You should, naturally, use those safer functions. And

you should write your functions with the same defensive programming in mind.

Chapter 7 Strings

195
© Thomas Mailund 2021
T. Mailund, Pointers in C Programming, https://doi.org/10.1007/978-1-4842-6927-5_8

CHAPTER 8

Substrings Through
Ranges
One thing that bothers me with the iterators in Chapter 7 is that when we searched for

words or integers, we didn’t get the string we matched back. We got a pointer to the

position where the match started. We would need to search again for the end of the

match if we wanted to know how large the match was. To extract the words, we either

have to copy them into another string or need a way to represent substrings. Both are

easy to do, but the more interesting one is representing and working with substrings,

so in this chapter, we will experiment with a string representation that can handle this.

We will not implement a complete library for an alternative string representation, but

enough to work as a starting point if it is something you will later wish to do.

The problem with using the zero termination character to define the end of a string

is that we cannot terminate a substring within a string. If we add a zero char there, then

we have terminated the entire string at that point. The zero termination is a simple

solution to strings. It embeds the termination inside the string, so we do not need extra

bookkeeping to know where a string ends, even if we start modifying a string from a

starting point inside it. But we need an alternative now. Two obvious solutions present

themselves. Keep track of where a substring starts and how long it is, or keep track of

where it starts and where it ends. The two solutions are equivalent. If we have a pointer

to where the string starts, begin, and we have its length, n, then begin + n is a pointer

one past the string. Conversely, if we have a pointer to the beginning, begin, and one

past the end, end, then end - begin is its length.

https://doi.org/10.1007/978-1-4842-6927-5_8#DOI

196

The choice is arbitrary, but I will go with pointers to the beginning and end of

substrings; see Figure 8-1. In the figure, we have two overlapping strings, foobarbazqux

and bar, and since there are no termination symbols, you will not be able to see that the

bar string sits inside the longer foobarbazqux string unless you examine the pointers.

I chose the begin/end, or range, representation because it resembles the way we

represented ranges in arrays in Chapters 5 and 6, so it is familiar to us. We can define the

data structure like this:

struct range {

 char *begin;

 char *end;

};

typedef struct range substr;

I named the struct range but the string type substr because I intend to use the

range data structure for more than substrings. It will also be part of the iterator design

pattern later.

I will let functions that return substr objects or take them as arguments pass them

by value. They are tiny objects, only two pointers, and in practically all functions that

work with this string representation, we need to pass both pointers to the functions in

any case, so we might as well pass them as part of their struct. Using pass by value lets

us use expressions that create strings in function arguments. We cannot take the address

of an expression; we need a variable for that, so this will not be possible with pass by

reference. Returning by value greatly simplifies our code, since we cannot return the

address of local variables—they will disappear before the caller can use them—and we

haven’t learned how to allocate memory on the heap yet.

Figure 8-1.  Range representation of substrings

Chapter 8 Substrings Through Ranges

197

When we create a substr object, we create a struct with a begin and end field, and

we can use this macro to save a few type strokes:

#define SUBSTR(b,e) \

 (substr){ .begin = (b), .end = (e) }

If you have a zero-terminated C string, we can find the zero terminal and get a

pointer to it. That will point one past the last “real” character and will function as the end

pointer in our new representation:

substr as_substr(char *s)

{

 char *x = s;

 while (*x) x++;

 return SUBSTR(s, x);

}

If you have a buffer, s, and you want a substring going from index i to j in it, you can

do this:

substr slice(char *s, int i, int j)

{

 assert(i <= j);

 return SUBSTR(s + i, s + j);

}

As an invariant of the structure, we will require that begin and end always point into

the same allocated buffer (with one exception), and we require that begin <= end. The two

pointers can be equal, and if they are, we have an empty string. We will not allow end to come

before begin, however. Then the length of a string is always end - begin. The special case for

the representation is that we will allow begin to be NULL. We can use that to test for special

cases in our functions, for example, to indicate that we have searched for a substring and

didn’t find it, or we can use this NULL substring to indicate iterator termination.

These helper macros make it easier to check for NULL and empty strings and to get

their length.

#define null_substr(x) ((x).begin == 0)

#define empty_substr(x) ((x).begin == (x).end)

#define substr_len(x) ((x).end - (x).begin)

Chapter 8 Substrings Through Ranges

198

To make it easier to return NULL substrings, we define a constant:

static substr const NULL_SUBSTR = { .begin = 0 };

If we have our string representation but need to translate it into C’s representation,

one option is to copy the string to a buffer and zero-terminate it. The following function

does that. We do not check for buffer overflow in it, but leave that responsibility to the

caller. The caller of a function can easily, and efficiently, check if the buffer’s length is at

least substr_len(x) + 1 long.

char *substr_to_buf(char *to, substr from)

{

 while (from.begin != from.end) {

 *to++ = *from.begin++;

 }

 *to = '\0';

 return to;

}

The function implicitly assumes that you are not writing into the buffer that from is

a range of. If you do, then you might overwrite the string you are copying before you get

the copy. The function is not intended to handle such cases, so it doesn’t. We will write a

copy function later that handles such cases correctly.

When we work with substr objects, we can be more defensive about buffer overflow.

If the objects are created, so they point into a valid buffer, then we have a valid range we

can write into, and in our code, we can ensure that we never write outside of the bounds

of the range.

Since C’s I/O functions assume that strings are zero-terminated, we cannot use them

with our new representation. But we can easily write our own, of course. I won’t write

many, but as an example, this function writes a string to standard output:

void print_substr(substr s)

{

 while (s.begin != s.end) {

 putchar(*s.begin++);

 }

}

Chapter 8 Substrings Through Ranges

199

We can create the two strings from Figure 8-1 and print them like this:

char buf[] = "foobarbaz";

substr string = as_substr(buf);

substr bar = slice(buf, 3, 6);

print_substr(string); printf("\n");

print_substr(bar); printf("\n");

If your substr ends at the zero terminal of an underlying C string, then you can, of

course, still use functions like printf():

printf("my favorite string is \"%s\"\n",

 string.begin);

But if not, you would end up printing past the string and on to the next zero

terminal—if there even is one, because we do not require that our substr objects point

into a C string, only that they have an underlying char buffer.

You can, of course, copy a substring if you want to use it with printf():

char tmp[substr_len(bar) + 1];

substr_to_buf(tmp, bar);

printf("my second favorite string is \"%s\"\n",

 tmp);

Or, if the underlying buffer is not read-only (like a C literal string), you can insert a

zero terminal before you write and restore the character there after. These two functions

handle that:

char zero_term(substr s)

{

 char c = *s.end;

 *s.end = '\0';

 return c;

}

void restore_term(substr s, char c)

{

 *s.end = c;

}

Chapter 8 Substrings Through Ranges

200

and you can use them like this:

char c = zero_term(bar);

printf("%s\n", bar.begin);

restore_term(bar, c);

In this example, it works because we used a char array as the underlying buffer. If we

had used a literal string for buf earlier, the behavior would be undefined.

In the remainder of the chapter, we will not concern ourselves with converting to

and from C’s strings and our substr objects. We will explore how to write our own string

library—or at least a toy version of one—and we can always write code for dealing with

conversion or I/O as needed.

�Basic Operations
As warm-up exercises, we can implement a few simple string operations. We have

implemented reversal a couple of times so far in the book, so we can start there. It is a

familiar function, and nothing much changes when we are reversing substr objects:

void substr_rev(substr s)

{

 if (empty_substr(s)) return;

 char * restrict x = s.begin;

 char * restrict y = s.end - 1;

 for (; x < y; x++, y--) {

 char c = *x; *x = *y; *y = c; // swap

 }

}

If begin and end point to the same location, y would end up pointing one before

y, so we would never enter the for-loop, and all would work as intended. However,

subtracting 1 from begin is only guaranteed to give us a valid pointer if that location is

within the allocated memory we are working with. It is highly unlikely that this could

ever be a problem—I cannot imagine which architecture we would have to work on—

but to be completely standard compliant, we shouldn’t subtract one from a pointer that

could point to the beginning of the buffer. It is trivial to avoid the situation, so that is why

we have the empty_substr() test at the beginning of the function.

Chapter 8 Substrings Through Ranges

201

If the string isn’t empty, we get a pointer to the first element, x, and a pointer to the

last element, y. The last element lies one before end because our data structure says that

end should point one past the last character. While we reverse, the two pointers point

into the same buffer, but they should not point at the same characters (except where they

meet in the middle where it doesn’t matter). So we can declare the pointers restrict. It

doesn’t give us any compiler optimization in this function, because we only fetch a value

from each once before we move the pointers. Still, when a pointer is not supposed to

be able to read a value written to through another, we might as well declare that. In the

future, we might change the ctual fetches, and then there could be optimization benefits.

If in the future, it goes the other way, and we need the pointers to access overlapping

data, we can always remove restrict again. Here, it works mostly like a comment to the

programmer that the data doesn’t overlap.

Other than that, the reversal function works the way we have seen before. We move x

upward and y downward, swapping chars as we go along, and we stop when they meet

at the middle of the string.

A similarly simple operation is swapping two substrings. They could be from the

same buffer or from different buffers, but we will require that they do not overlap if they

are in the same buffer. It is not well defined what it would mean to swap strings that

overlap unless the overlapping part is identical in the two. So we will only swap non-

overlapping strings. The code for that is simple, bordering on the trivial:

void swap_substr(substr x, substr y)

 char * restrict p = x.begin;

 char * restrict q = y.begin;

 for (; p != x.end && q != y.end; p++, q++) {

 char c = *p; *p = *q; *q = c; // swap

 }

}

For a proper swap with this function, the two substrings should have the same

length. Otherwise, only parts of the longer string are moved. That check is also

something we leave to the caller, but we still make sure that we do not write outside

of either substring. We wouldn’t want buffer overflow, even if the caller didn’t check if

the swap was appropriate. When we have all the necessary information to avoid buffer

overflow, which we do with our representation, unlike C’s plain buffers, then we should

use it to write defensive code.

Chapter 8 Substrings Through Ranges

202

A more useful function than those earlier is a general copy function. Here, we

should also consider if substrings can overlap. The strcpy() function says that it is

undefined what happens if the input and output overlap, so the function we wrote in

Chapter 7 implicitly assumed that they didn’t. It would work if the strings overlap but

the destination was at a lower address than the source, but it would fail if it was the other

way around. We can do better than that.

The issue is that if the source and the destination of a copy overlap, then we risk

overwriting part of the source before we copy it. Consider Figure 8-2 where we have

overlapping strings x and y. If we want to write x into y, and we start from the left, we first

copy f into the first position in y. That is the first letter in the overlapping range, however,

and now the b in bar is gone. When we reach it in the copy, we will have replaced bar

with foo, and we will end up with y being foofoo. However, if we started from the right

instead, we would have written bar into the non-overlapping part of y before we got

to the overlap, and we would end up with the correct foobar. If we copied in the other

direction instead, from y to x, then copying from the left would work—we would have

copied the overlapping bar into the beginning of x before we started writing in it, but

now copying from the right doesn’t work. We have to choose the direction of the copy

based on where the two substrings sit if they overlap. If the destination sits to the left,

then we can copy from the left, but if it sits to the right, then we must copy from the right.

Figure 8-2.  Copying overlapping substrings

Chapter 8 Substrings Through Ranges

203

We shouldn’t copy a longer string into a shorter one. We risk writing outside of the

buffer that way. Our data structure tells us that we can write to the end of a substring,

but we do not know if there is any valid memory to write to beyond it. However, there is

nothing wrong with writing a shorter string into a longer. That is often useful, for example,

if we wish to concatenate several strings. So we will write as much as we can from the

source string into the destination, stopping if we reach the destination end. If we finish

copying before we reach the end of the destination, we want the caller to know how much

we wrote. We can do this, among other ways, by returning a new substr that begins at the

next free character in the destination string and goes to the end of the destination.

Such a copy function can look like this:

#define MIN(a,b) (((a)<(b)) ? (a) : (b))

substr copy_substr(substr to, substr from)

{

 size_t n = MIN(substr_len(to), substr_len(from));

 // copy right cannot handle empty strings,

 // so bail out here

 if (n == 0) return to;

 if (to.begin < from.begin) { // copy left
 char * restrict y = to.begin;

 char * restrict x = from.begin,

 * xend = from.begin + n;

 while (x < xend) {
 *y++ = *x++;

 }

 } else { // copy right
 char * restrict y = to.begin + n;

 char * restrict x = from.begin + n,

 * xbeg = from.begin;

 do {
 *(--y) = *(--x);

 } while (x > xbeg);

 }

 return SUBSTR(to.begin + n, to.end);

}

Chapter 8 Substrings Through Ranges

204

We take the shortest string length to compute the actual intervals we should work

with. It is the easiest way to place the pointers before we copy in both directions. When

we copy from the right, we decrement and assign before we test if we have reached the

beginning of the interval. Intervals are asymmetric when it comes to the beginning and

end because the end pointer refers to the address one past the last character, while the

beginning points to the first character. Because of the difference, the code for copying

from the right doesn’t work if we start with an empty string, so we explicitly bail out at

the beginning if this is the case.

We use the two begin pointers to determine if we should copy from the left or from

the right. We don’t test if they actually overlap, because we can copy them either way.

Technically, it is undefined behavior to compare the begin pointers if they are not

pointing into the same allocated buffer. Still, if they don’t, then they don’t overlap, and

then we do not care about the result of the comparison—the copying will still work,

regardless of the test.

For comparing strings, we can also write our own function. In fact, we must, because

C’s strcmp() will only work on zero-terminated strings. It is fairly straightforward to

implement strcmp(), because you just compare the strings character by character until

you see a difference, breaking out of the loop if you see a zero character. We can do

almost the same with a substr string, but we have to handle the case where we make it

through the entirety of one or both of the strings differently.

When we use zero-terminated strings, unless we are comparing two identical strings,

we will eventually see a difference; if nothing else, we will see a zero character when we

reach the end of one of them. If one string is a prefix of another, they are identical to that

point, and the ordering on strings says that the shorter should be smaller. If we break

when we see a character that differs between the two strings, we also catch that one is a

prefix of another. We correctly identify the shorter as the lexicographically smaller string,

because it is the one that has the zero character. With our new string representation, we

can still determine the order when we see different characters, but otherwise we must

continue until the end of the shortest string and then determine which of the two strings

were the shorter. An implementation can look like this:

int substr_cmp(substr x, substr y)

{

 while (x.begin != x.end && y.begin != y.end) {

 if (*x.begin < *y.begin) return -1;

 if (*x.begin > *y.begin) return +1;

Chapter 8 Substrings Through Ranges

205

 x.begin++; y.begin++;

 }

 // We've reached the end of one of the substrings.

 // If they had the same length, they are equal,

 // otherwise, the shorter string is the smallest

 if (x.begin < x.end) return +1; // x is longer

 if (y.begin < y.end) return -1; // y is longer

 return 0; // the strings are equal

}

We cannot directly use this function with a qsort(), because we have given it the

same interface as strcmp(), but with a wrapper you can now sort substr objects:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "substr.h"

int cmp_func(void const *x, void const *y)

{

 substr const *a = x;

 substr const *b = y;

 return substr_cmp(*a, *b);

}

int main(void)

{

 char const *x = "foobarbaz";

 int n = strlen(x);

 substr suffixes[n];

 for (int i = 0; i < n; ++i) {

 suffixes[i] = slice((char *)x, i, n);

 }

Chapter 8 Substrings Through Ranges

206

 qsort(suffixes, n, sizeof *suffixes, cmp_func);

 for (int i = 0; i < n; ++i) {

 print_substr(suffixes[i]); putchar('\n');

 }

 return 0;

}

In the program, assume that

#include "substr.h"

gives you the definition of the substr functions we have written.

We could go on for a while implementing functions that operate on our substr string

representation, but before we continue, I think it is time to look at the iterator problem

that motivated the new representation in the first place.

�Revisiting Word Iterators
In Chapter 7, we used the function find_word():

char *find_word(char *x)

{

 while (*x && !isalpha(*x))

 x++;

 return x;

}

to find the first character in a word—or what we defined to be a word—and we used the

function skip_word():

char *skip_word(char *x)

{

 while (*x && isalpha(*x))

 x++;

 return x;

}

Chapter 8 Substrings Through Ranges

207

to move to the first character past a word. We combined these two to give us an iterator

that identified the positions in a string where a word occurred, but the iterator did not

give us the actual word. We would need to combine the iterator with a call to skip_

word() to get it. Now that we have a representation of strings where we can represent

substrings, we can update the iterator to get the actual words.

Returning the word we find is simple. We can return a substr from the iterator

function. We used the word we found as the iterator itself, searching for the next

occurrence from the end of the previous, and we can do that again. To try something

else, however, I will add an explicit iterator object this time. We initialize an iterator

object before we loop through the words, and we repeatedly call the function that

gives us the next word with the same iterator until we have exhausted the words in the

string. We will still search for the next word from the end of the previous—or from the

beginning of the string for the first word—but with the explicit iterator, we separate the

responsibility of the token we return from the responsibility of iterating. It also gives us

a place to save information about the full string, so we stop iterating before we move

outside of the buffer. The word we return from the iterator only contains the substring

containing the word, so we need the extra information for iterating in any case.

The iterator object doesn’t have to be complicated. We are searching for the first/

next occurrence in a substr, so a natural representation is simply a substr. We will

define a separate type for iterators, however, to make the intent of such objects clear.

typedef substr substr_iter;

An iterator function should take an iterator object, find the next occurrence, return

it, and update the iterator, so it is ready for the next call. Because we must update the

iterator, we pass it by reference, that is, as a pointer. To indicate that there are no more

words to iterate over, we must return a special object that we can recognize as meaning

this, and we were foresighted enough to define such an object. If we return NULL_SUBSTR,

a substr where begin is a NULL pointer, then we have signalled that no more words are

coming.

The word iterator looks like this:

substr next_word(substr_iter *iter)

{

 char *begin = find_word(iter->begin);

 if (*begin == '\0') {

 // no more words

Chapter 8 Substrings Through Ranges

208

 return NULL_SUBSTR;

 }

 char *end = skip_word(begin);

 iter->begin = end;

 return SUBSTR(begin, end);

}

The iterator contains the interval we should search in, so we search for the beginning

of a word with find_word() starting at iter->begin. If we do not find a word, then we

should stop iterating, so we return NULL_SUBSTR. Otherwise, we find where the word

ends; the search starts from the beginning of the identified word, and we return what we

find as a substr.

You can use the iterator like this (where you get the relevant functions from the

substr.h header):

#include <stdio.h>

#include "substr.h"

int main(void)

{

 char const *x = "\tfoo bar123baz\nqux321";

 substr_iter iter = as_substr((char *)x);

 for (substr word = next_word(&iter);

 !null_substr(word);

 word = next_word(&iter)) {

 print_substr(word); printf("\n");

 }

 return 0;

}

It will print

foo

bar

baz

qux

Chapter 8 Substrings Through Ranges

209

We start with setting the iterator to the entire string, then we repeatedly call next_

word(&iter) (pass by reference) until we see a null substring.

We can also rewrite our function from Chapter 7 for copying words to using the word

iterator. Then we need to combine it with the copy_substr() function from the previous

section. We can iterate through a string and get all the words, and then we must copy

them into the destination string. The copy function returns a substr containing the

remainder of the string we have copied into, so we can repeatedly copy to it. If we have

implemented copy_substr() correctly, and I think we have, then we do not need to

worry about buffer overflow or such when we use it. We can keep writing to the output

string, even when we have filled it completely, because copy_substr() will not write

beyond the bounds of its input, which in that case will be an empty string. We do not

need any checks for how far we have written; we can keep writing words as long as we

get some from the iterator.

We need to separate the words in the output with space. This is also easy to handle

with a working copy_substr(). If we have a separator substr, we can safely write it to

the output string between the words. There is a special case with either the first or the

last word. If we write a separator after each word, we have written one too many when

we are done, because we shouldn’t write it after the last word. We could go back one

character after the loop, but then we must be sure that we have entered the loop, to begin

with; we don’t want to remove a character if we never wrote any words. Similarly, if we

write a separator before each word, we have written one too many before the first. An

easy solution is to change the separator along the way. We start with an empty string,

which we can safely write before the first word, and after the first word, we change it to a

space. That solution looks like this:

substr copy_words(substr to, substr from)

{

 // remember where we started

 char *begin = to.begin;

 // sep is used to put spaces between

 // words but not before the first word

 substr sep = as_substr("");

 // empty string substr_iter iter = from;

 for (substr word = next_word(&iter);

 !null_substr(word);

Chapter 8 Substrings Through Ranges

210

 word = next_word(&iter)) {

 to = copy_substr(to, sep);

 to = copy_substr(to, word);

 // after the first iteration, sep should always

 // be space

 sep = as_substr(" ");

 }

 return SUBSTR(begin, to.begin);

}

At the beginning of the function, we remember where the output string started. We

want to return the string that contains all the words, but to in the function moves every

time we write to it. When we are done with the iterator, to.begin points to the first

character after the words, so we want to return the substring that goes from the original

beginning to that position.

If you want a compacting version, you can do what we did in the previous chapter

and call copy_words() with the same string as input and output.

substr compact_words(substr s)

{

 return copy_words(s, s);

}

As we copy words, we do not modify any part of the input that we need to read later,

so this is safe.

Other iterators are equally simple to implement. Let us not repeat the code with an

iterator that finds integers again, but try something new. How about an iterator that finds

all occurrences of a string?

We can search for the first occurrence of one string in another like this:

substr find_occurrence(substr x, substr y)

{

 int n = substr_len(x);

 int m = substr_len(y);

 if (m > n) return NULL_SUBSTR;

 char *s = x.begin, *end = x.end - m;

Chapter 8 Substrings Through Ranges

211

 for (; s < end; s++) {

 if (strncmp(s, y.begin, m) == 0) {

 return SUBSTR(s, s + m);

 }

 }

 return NULL_SUBSTR;

}

The function searches for an occurrence of y in the string x. First, we get the length

of the strings, n for x and m for y. If the string we are searching for is longer than the string

we search in, we cannot find an occurrence, so we return the null substring to indicate

that. Otherwise, the address x.end - m is no further left than x.begin, so we are allowed

to point there, and it is the last position where we could potentially have a match—to the

right of that position, y is too long to match.

From here on, we go position by position and compare the string we point to with s

to the substring in y. We use the standard library’s strncmp() function. It compares the

strings character by character, but only up to m characters, so not beyond the bounds of

the shorter string. This is not the fastest way to search for a string, but it is fast enough

for our purposes here, and I will refer you to books on string algorithms for better

approaches.

If we locate a match, then s points to the beginning of the match, and we know that

the match is m characters long, so we return SUBSTR(s, s + m). If we do not find a match

in the loop, we return a null substring to indicate that.

For the iterator, we must first search for an occurrence. If we find one, we should

update the iterator. Here, we have a choice between an iterator over all occurrences

or over only the non-overlapping occurrences. If we want to find all occurrences, we

should move the iterator to one past the occurrence we just found. If we only want non-

overlapping occurrences, we should move the iterator to the end of the occurrence we

just found. We can make this choice an option for the iterator.

substr next_occurrence(substr_iter *iter,

 substr s,

 int overlaps)

{

 substr occ = find_occurrence(*iter, s);

 if (!null_substr(occ)) {

Chapter 8 Substrings Through Ranges

212

 iter->begin = overlaps ? occ.begin + 1 : occ.end;

 }

 return occ;

}

In the following example program, the first search that doesn’t include overlapping

matches will report matches at index 0 and 4, but the one that includes overlaps will also

include matches at index 2 and 6.

#include <stdio.h>

#include "substr.h"

int main(void)

{

 substr x = as_substr("xaxaxaxaxaxa");

 substr y = as_substr("xaxa");

 substr_iter iter = x;

 printf("searching for %s in %s\n", y.begin, x.begin);

 for (substr occ = next_occurrence(&iter, y, 0);

 !null_substr(occ);

 occ = next_occurrence(&iter, y, 0)) {

 printf("Found an occurrence at index %d\n",

 (int)(occ.begin - x.begin));

 }

 iter = x;

 printf("searching for %s in %s\n", y.begin, x.begin);

 for (substr occ = next_occurrence(&iter, y, 1);

 !null_substr(occ);

 occ = next_occurrence(&iter, y, 1)) {

 printf("Found an occurrence at index %d\n",

 (int)(occ.begin - x.begin));

 }

 return 0;

}

Chapter 8 Substrings Through Ranges

213

The occurrence itself, as returned by the iterator, is not interesting as a substring.

We know what we are searching for, and if we get anything but the null substring, we get

that string back. But we can use the pointers in the substr object to identify the locations

where we have matches.

�Replacing Strings
To finish the chapter, we will look at one more operation, and two related functions, that

will illustrate a problem with our current string representation and act as motivation

for the following chapter, where we get to allocate memory from the heap. We will look

at replacing one substring with another and then deleting and inserting substrings as

special cases of that.

If we have a string, z, containing a substring x (that we require that the caller ensures

is contained in z), and we want to replace x with another string, y, then an easy case

is if we can write the result to another string, out. This is a simple matter of copying

substrings. First, we copy the part of z that comes before x into out, then we copy y, and

then we copy the bit that comes after x in z. We can return the substring of out that we

wrote to. See Figure 8-3.

Figure 8-3.  Replacing one substring with another

Chapter 8 Substrings Through Ranges

214

For this to work, we also have to require that y isn’t contained in the part of out that

we write to before we copy y. That is also something we leave to the caller to ensure. If

we do all the copying with copy_substr(), then we do not need to worry about writing

outside of the bounds of out. In this implementation

substr replace_substr(substr out,

 substr z, substr x,

 substr y)

{

 substr tmp = out;

 tmp = copy_substr(tmp, SUBSTR(z.begin, x.begin));

 tmp = copy_substr(tmp, y);

 tmp = copy_substr(tmp, SUBSTR(x.end, z.end));

 return SUBSTR(out.begin, tmp.begin);

}

we use a temporary substr, tmp, for copying. It starts out as the full out string, and since

we assign each copy to it, its begin moves forward for each copy. After we have copied

the last bit of z, its begin points at the first character after the last character we copied, so

it should be the end of the substr that we return.

Figure 8-4.  Replacement capable of handling in-place substitution

Chapter 8 Substrings Through Ranges

215

If you call this function with z equal to out (or just contained in the first part of out),

the function might fail. If the replacement string y is longer than x, we would overwrite

the last part of z before we copied it. We can fix this by copying the part of z to the right

of x before we copy in y. It just requires a little bit of calculation to work out the indices

that this string should be copied to. We can work out the offset into out that x would sit

at if we didn’t remove it; it is the distance from the beginning of z and to x, so x.begin -

z.begin. That is where y will be inserted. To that, we must add the length of y to get

where the remainder of z should be copied. If y is too long, blindly adding the length

might give us a pointer outside of out, so we must use the minimum of that index and

the end of out. See Figure 8-4 for where the offsets will sit.

In code, we can create substrings for the three substrings to copy, z up to x, z after

x, and y (which we already have). Using the calculations we just did, we can similarly

compute the destinations for the three strings. After that, we copy, remembering to copy

y after we have moved the last part of z. We don’t need to remember the substrings we

get in return from the substr_copy() calls, except the begin pointer when we move the

last substring of z. We need that for the return value, which should still use this pointer

as its end value.

substr replace_substr(substr out,

 substr z, substr x,

 substr y)

{

 substr z_before = SUBSTR(z.begin, x.begin);

 substr z_after = SUBSTR(x.end, z.end);

 size_t ylen = substr_len(y);

 size_t outlen = substr_len(out);

 size_t x_beg_idx = x.begin - z.begin;

 size_t y_end_idx = MIN(x_beg_idx + ylen, outlen);

 substr out_before = SUBSTR(out.begin, out.begin + x_beg_idx);

 substr out_after = SUBSTR(out.begin + y_end_idx, out.end);

 substr out_y = SUBSTR(out.begin + x_beg_idx,

 out.begin + y_end_idx);

Chapter 8 Substrings Through Ranges

216

 copy_substr(out_before, z_before);

 char *ret_end = copy_substr(out_after, z_after).begin;

 copy_substr(out_y, y);

 return SUBSTR(out.begin, ret_end);

}

If you know that you are doing an in-place replacement, rather than just allowing

for one, you can simplify the code slightly. You don’t need to copy the first part of z—it

is already where it is supposed to be—and you can avoid computing some of the offsets

because you have them as pointers from x already. It is not a lot you save, though.

substr replace_substr_inplace(substr z, substr x,

 substr y)

{

 size_t zlen = substr_len(z);

 size_t ylen = substr_len(y);

 size_t x_beg_idx = x.begin - z.begin;

 size_t y_end_idx = MIN(x_beg_idx + ylen, zlen);

 char *y_end = z.begin + y_end_idx;

 substr in_after = SUBSTR(x.end, z.end);

 substr out_after = SUBSTR(y_end, z.end);

 substr out_y = SUBSTR(x.begin, y_end);

 char *ret_end = copy_substr(out_after, in_after).begin;

 copy_substr(out_y, y);

 return SUBSTR(z.begin, ret_end);

}

If you can replace a string, then you can also delete it. You can replace it with an

empty string:

substr delete_substr(substr out, substr x, substr y)

{

 return replace_substr(out, x, y, as_substr(""));

}

Chapter 8 Substrings Through Ranges

217

substr delete_substr_inplace(substr x, substr y)

{

 return replace_substr_inplace(x, y, as_substr(""));

}

Again, here it will be up to the caller to ensure that the string, y, is contained in x.

You can also insert strings. Here, we need an index into the original string, and we

will demand that the caller ensures that it is a valid index. We can assert() it in the

code, but that assertion is only tested if the code is compiled with the assertion flag

enabled, and it will crash the program if the requirement isn’t met, so it doesn’t change

the contract with the caller.

Usually, a valid index into a string has to be between zero and the length of the string,

the latter not included. That is where there is a valid character. When we insert, however,

we might want to append to a string, so we should also allow an index that points one

past the end of the string.

substr insert_substr(substr out, substr x, size_t index, substr y)

{

 assert(index <= substr_len(x));

 char *p = x.begin + index;

 return replace_substr(out, x, SUBSTR(p, p), y);

}

For the in-place version, it doesn’t make sense to make the index point past the

string (but we can allow it to point one past just for consistency). The string will not be

added, because it would have to go beyond the bounds of the string we insert into, and

we cannot do that with our current framework.

substr insert_substr_inplace(substr x, size_t index, substr y)

{

 assert(index <= substr_len(x));

 char *p = x.begin + index;

 return replace_substr_inplace(x, SUBSTR(p, p), y);

}

Chapter 8 Substrings Through Ranges

218

There is the general pattern with our modification functions: when we make the

resulting string shorter—we delete a string or replace a string with a shorter string—then

we get what we want. If we make the string longer, then we might get the full result if we

write to a larger buffer, but otherwise we lose characters that fall off to the right when we

copy.

We have to implement the functions this way because we are bounded by the

buffers they get as input. We cannot create larger buffers inside the functions to contain

the result, because the memory we allocate that way goes on the stack, and it will be

deallocated as soon as the functions return. To move beyond that limitation, we must

allocate memory on the heap, and that is the topic for the next chapter.

Chapter 8 Substrings Through Ranges

219
© Thomas Mailund 2021
T. Mailund, Pointers in C Programming, https://doi.org/10.1007/978-1-4842-6927-5_9

CHAPTER 9

Dynamic Memory
Management
So far, we have managed to write programs that only use global and local variables. In

C-speak, these are called static and automatic memory allocation, and static memory

allocation lasts the lifetime of the program. In contrast, automatic variables are deleted

when you return from the function you defined them in. In practice, automatic means

stack allocated, although the C standard doesn’t require there to be a stack. The third

type of memory is dynamic memory, which is the memory you allocate on the heap in

the idealized memory model we saw in Chapter 2. This is the memory you explicitly

have to ask to get allocated, and you are also responsible for freeing it again once you are

done with it. The concept is simple; the functions you use to allocate and free memory

are simple, but do not let that trick you. Keeping track of allocated memory is far from

easy. If you forget to free memory you are no longer using, your programming is leaking

memory, and if it goes on too long, you run out, and your program will likely crash. If you

free memory that you still use, you are in the same situation as if you have a pointer to a

stack-allocated object that is no longer live. You access it at your peril.

https://doi.org/10.1007/978-1-4842-6927-5_9#DOI

220

Only in the most straightforward programs is it easy to track how allocated memory

moves through the code, and it would stress my credulity to believe that any large system

written in C is entirely free of dynamic memory–related errors. When you work with

dynamic memory, you must be constantly vigilant to ensure that when you allocate

memory, it will be freed at a later point, and not too soon. It is not an easy task, and

even the best programmers fail. There is a reason that most high-level programming

languages do not let the programmer allocate and deallocate memory in this way, but

deal with memory management through automatic garbage collection. That is not

something we have in C,1 so we must structure our programs in ways that make it easier

to handle ourselves.

In this chapter, I will describe the four functions you get from C for dynamic memory

management, and I will show you their use in three examples. Then in Chapters 11 to 12,

you will see how we use memory management to implement data structures, and in

Chapters 16 and 15, I will show two techniques that alleviate the trouble of memory

management slightly.

�Functions for Dynamic Memory Allocation
Your platform likely has several functions for allocating memory, most operating systems

do, but the C standard only has four since the C11 standard and three before then. They

all give you a block of memory if they can allocate it, and a NULL pointer if they cannot,

and you are then responsible for freeing that memory later. There is a single function for

freeing memory that handles deallocation for all three of the allocation functions.

�malloc()
The malloc() function is the simplest of the allocation functions. It takes a single

argument, which is the size of the block you want to allocate, and it returns a newly

allocated memory block of that size. You can use sizeof() to get the correct size of the

memory block you want. The return type is void *, and you do not need to explicitly cast

it to another type. You can assign a void pointer to any other data pointer type without

cast.

1�There are third-party garbage collectors for C; see, e.g., www.hboehm.info/gc/. It is not part of the
standard, though, so we won’t discuss them here.

Chapter 9 Dynamic Memory Management

http://www.hboehm.info/gc/

221

For example, if we allocate a block of size sizeof(int), we get a block of memory

large enough to hold an integer:

int *ip = malloc(sizeof(int));

If we use sizeof(double), we get a block that can hold a double:

double *dp = malloc(sizeof(double));

or if we want a block to hold a struct, we can use sizeof() of the struct’s type:

struct S { int i; double d; };

struct S *sp = malloc(sizeof(struct S));

If you use the sizeof() a type to allocate memory, however, you need to be careful if

you change the type of an object later. Since malloc() doesn’t know or care about types,

it only cares about sizes, it will give you a block of memory of the size you specify. If you

change the type of a variable, but forget to change the type in the call to malloc(), you

might get the wrong size of memory. An idiom to avoid this problem is to use a variable

to get the size. If you have a pointer of type T *, and you want to allocate memory to hold

an object of type T, then you can do this:

T *p = malloc(sizeof *p);

Don’t worry about dereferencing p here. You are not going to look at any memory

you are not supposed to. The variable p doesn’t even exist in this code; we are still in the

process of defining it. The sizeof operator gets the type from p, so it gets the size of what

p is a pointer to, and that is all. Now, regardless of how you change the type for p, you get

a memory block that can hold the type it points at.

Size is one thing, of course, but it is not all when it comes to storing objects. We

discussed alignment in Chapter 2, and that is also relevant for using memory addresses

to store values. However, malloc() is guaranteed to give you an address where all types

can be aligned. If you get a memory address from malloc(), then you can place any

object there that can fit into that memory block. The functions calloc() and realloc()

described later give you the same guarantee, while aligned_alloc() takes an argument

that specifies how the allocated memory should be aligned.

Chapter 9 Dynamic Memory Management

222

If you want to allocate an array, you need to explicitly calculate the size of the array.

That, however, is simple: you multiply the size of one element with the number of

elements you want. To get an integer array of length 10, you could allocate memory like

this:

int *arr = malloc(10 * sizeof *arr);

What you get is a pointer to the first element in the memory block and not an array

as such. You can use the memory the way you use an array argument to a function; think

of it as an array that has degraded to a pointer. You cannot get an actual array; you only

get those by defining them, and then you cannot assign to them. Except for the type,

however, there is no difference. You have the same information and guarantees about an

array allocated this way, as you do for a function argument array.

If malloc() cannot allocate the memory you want, for example, if there isn’t

sufficient memory in the process’ memory space (or for whatever other reasons), it

will return a NULL pointer. For example, if we try to allocate a block of size SIZE_MAX, a

macro defined in <stdlib.h> that specifies the largest size an object can have, then we

will probably not succeed.

char *x = malloc(SIZE_MAX);

if (x) {

 printf("success???\n");

} else {

 printf("couldn't allocate %zu bytes.\n", SIZE_MAX);

}

We should always check the return value of the allocation functions before we use

the address they return. We will always get all or nothing, but we need to check if we

succeeded before we continue our program under the assumption that all went well.

The memory you have allocated with malloc(), or any of the other allocation

functions described in this section, should be freed again. You do that with the function

free() described later. If you allocate, you free

int *ip = malloc(sizeof(int));

// use ip for what you need it for

free(ip);

Chapter 9 Dynamic Memory Management

223

It is implementation dependent what happens if you call malloc() with size zero.

You either get a NULL pointer in return or get a minimal allocated object (that you

cannot do anything with, without entering undefined behavior). But you are allowed to

do it, and you do get a pointer back—just not a pointer you can do anything with. If it

isn’t a NULL pointer, however, you must still free() it.

�calloc()
Like malloc(), calloc() gives you a new chunk of memory, but the functions differ in

two ways. Whereas malloc() takes one argument, the size of the memory block you

want, calloc() takes two arguments, the size of the elements you want to allocate plus

how many elements you want. So, to allocate an array of 10 integers and an array of 20

doubles, you could write

int *ip = calloc(10, sizeof *ip);

double *dp = calloc(20, sizeof *dp);

Remember to free the memory after use.

free(ip);

free(dp);

With calloc(), you can avoid some overflow issues when allocating arrays. If you

want to allocate an array of n elements of type T, you need to allocate n * sizeof(T)

memory. But n * sizeof(T) might be larger than SIZE_MAX. With malloc(), you need

to check if this is a problem yourself because malloc() only sees the argument you give

it, and by that point, you already have an overflow. You need to check before you call

malloc().

if (SIZE_MAX / sizeof(T) < n) {

 // not enough memory

}

With calloc(), you give the function n and sizeof(T), and it will check for overflow.

If there is one, you get a NULL pointer back, the same as if allocation failed.

Of course, this isn’t as helpful as it might sound because you still have a logical error

in your program that you need to deal with if you want to allocate more space than what

is possible. Still, it is better to get an explicit error, a NULL pointer, than a subtle overflow

that can hide for a very long time.

Chapter 9 Dynamic Memory Management

224

The alignment guarantees you get from calloc() are the same as for malloc(). You

can put any element at the first address, and if you use it as an array, the way sizeof()

works guarantees you that you can do that as well for both allocation functions. That

calloc() works with a number of elements, and the size of each element, doesn’t mean

that it works differently if you use it to allocate an array. The two functions behave the

same.

The second way in which malloc() and calloc() differ is in memory initialization.

The memory that malloc() gives you is not initialized. You can make no assumptions

about what the memory contains; you get undefined behavior if you read it before you

have written to it. With calloc(), you get memory that is initialized to all zero-bits.

There are times when this is useful, but be careful. All zero bits might not mean what

you think it means. The C standard guarantees you that for integral types, integers and

characters basically, all zero bits mean zero (or a zero; integers are allowed to have both

positive and negative zero). If you want an array of an integral type, then you get an array

that is initialized to zero. If you want an array of double that is initialized to zero, or if you

want an array of pointers initialized as NULL pointers, then you are out of luck. A zero

double, or a NULL pointer, might be represented as all zero bits, but you are not given

such a guarantee by the C standard. It might be the case on the computer you write your

program, but not on the server or embedded device it will run on in two years. In most

cases, if you want an initialized array, you have to initialize it yourself, and then you can

save some time by getting the memory from malloc() instead of letting calloc() set the

memory to zero first.

Suppose you do have an integral type, and you want it initialized to zero. In that case,

there can be some advantages to using calloc() over getting memory with malloc()

and then initializing it with memset() or a similar function. The underlying operating

system might provide a calloc() function that doesn’t give you the initialized memory

right away, but allocates the virtual memory for it. Then it can map that virtual memory

to actual memory that is set to zero. As long as you read from memory, all the elements

in the array are seen as zero.

When you write, you get a real chunk of memory for parts of the array, and you can

change that, while most of the zero entries still map to the same real memory. This,

however, is not something that the C standard gives any promises about, but it is a

frequent implementation.

I rarely find calloc() useful because I rarely want to allocate integral arrays

initialized to zero, and it is the only case where I can see any benefit to it. If I need to

Chapter 9 Dynamic Memory Management

225

allocate memory that I need to initialize myself anyway, I prefer to use malloc() and

save the extra initialization time. If there is a risk of overflow in the size of the block I

have to allocate, I prefer to check that up front and deal with it rather than treat it as an

allocation error. If I cannot treat it in any better way, I can always default to the handling

I would do if I got a NULL pointer back from the malloc() call.

If you do not want to handle overflow separately from allocation errors, you can use

these macros:

#define size_check(n,type) \

 ((SIZE_MAX / sizeof(type)) >= (n))

#define checked_malloc(n,type) \

 (size_check((n),(type)) ? \

 malloc((n) * sizeof(type)) : 0)

Then, to allocate an array of n elements of type T:

T *p = malloc(n * sizeof *p);

you can use

T *p = checked_malloc(n, *p);

�realloc()
If you need to resize a chunk of memory that you have allocated using one of the other

functions, then you go to realloc(). You call it with two arguments, a pointer to the

memory you want to resize and the new size you want. For example, if you have an

integer array with 10 elements:

int *ip = malloc(10 * sizeof *ip);

if (!ip) {

 // handle error

}

and you want to grow it to 100 elements, you can use realloc() like this:

int *new_ip = realloc(ip, 100 * sizeof *new_ip);

if (!new_ip) {

 // handle error

Chapter 9 Dynamic Memory Management

226

}

ip = new_ip;

You can use realloc() both to grow and shrink memory, so you can go down to 25

elements again later with

new_ip = realloc(ip, 25 * sizeof *new_ip);

if (!new_ip) {

 // handle error

}

ip = new_ip;

Three different things can happen with a call to realloc(), and one of them is the

reason I didn’t write

ip = realloc(ip, 25 * sizeof *new_ip);

even though we end up assigning the new memory to the ip pointer. In the case that

realloc() cannot allocate the required memory, it returns a NULL pointer, but it does

not free its first argument. If we assigned the call directly to ip, we would no longer have

a reference to the memory it pointed at, and we would have a memory leak. This mistake

is so common that some systems have a reallocf() function that does free the first

argument in case of an allocation failure, but that function is not part of the C standard.

If you use realloc(), test the return value before you assign it to the pointer you are

resizing.

That was the behavior with failure. If the function succeeds, there are two cases:

it managed to extend the memory you already had, or it needed to allocate memory

elsewhere. Maybe there is unused memory after the block you already have, and in that

case, realloc() will give you permission to use it and return the pointer you gave it. If

there isn’t, then realloc() will allocate a new block of memory of the desired size, copy

the data you already have to the new block, free the old block, and give you a pointer to

the new memory address.

It corresponds roughly to this, except that there is error handling:

// ip = realloc(ip, new_size)

new_ip = malloc(new_size);

memmove(new_ip, ip, old_size);

free(ip);

Chapter 9 Dynamic Memory Management

227

ip = new_ip;

The runtime system knows how large allocated objects are, so realloc() will know

how much memory to copy.

You shouldn’t implement reallocation yourself in this way, of course. You get it for

free with realloc(), and if realloc() can allocate more memory at the location you

already have, you can save the copying.

If realloc() succeeds, you should never deallocate the old pointer you gave it as

an argument. It is either the same as the memory you got back from the call, or it was

freed in the call. Assign it to the old pointer if you want, but do not call free() on the old

pointer. If it was already freed, you are not allowed to do it.

new_ip = realloc(ip, new_size);

free(ip); // BIG NO NO!!!

The usual pattern is to check the return value and then write it to the old pointer:

new_ip = realloc(ip, new_size);

if (!new_ip) { /* handle error */ }

ip = new_ip; // now ip has the new memory chunk

If you do this, then you shouldn’t free the temporary variable new_ip. That would

also free the memory that ip points to, and you don’t want to do that prematurely.

If the first argument to realloc() is a NULL pointer, the function works the same

as malloc(), and you get a memory allocation of the given size or a NULL pointer if the

allocation failed.

If you want to check the allocation size before you call realloc(), and not consider

an overflow different from an allocation error, you can use a macro similar to the one for

malloc():

#define checked_realloc(p,n,type) \

 (size_check((n),(type)) ? \

 realloc((p), (n) * sizeof(type)) : 0)

You are allowed to call realloc() with size zero, realloc(p,0), but you should

never do so. The problem is that the standard is unclear on what will happen. In the

C89 standard, such a call would free the memory pointed to by p, and that was clear

enough. With C99, however, that requirement was removed. If you call realloc(p,0),

it is allowed to return a value pointer the way malloc(0) does—either a NULL pointer

Chapter 9 Dynamic Memory Management

228

or a valid pointer you can free(), which indicates zero bytes. But what happens to the

data that p points to? If realloc() returns NULL because of an error, it hasn’t deleted p,

but if realloc() succeeds, it should free() the data. If you call realloc(p,0) and get

NULL back, was it a failure, so p isn’t freed, or was it a failure so it was? You don’t know,

and what happens depends on your runtime system and which standard it conforms

to. If you free(p) because you got NULL, you might be freeing an object that was

already deallocated, but if you don’t, then you might leak memory. It is a mess, but a

compromise in the current standard because different implementations already rely on

different behavior. With all undefined behavior, though, you are best off avoiding it.

The preceding macro does not check if we attempt to allocate zero bytes. If you end

up in that situation, you probably want to handle it differently than an allocation error.

Most likely, you want to replace realloc(p,0) with something like

free(p);

p = 0;

or such, but this is not what the macro is intended for. It should allocate or indicate

an allocation failure, not an allocation success for zero bytes.

�aligned_alloc()
The aligned_alloc() function is a newcomer to the C standard, and it allows you to

put alignment restrictions on allocated memory. It takes two arguments, the alignment

information and the size of the memory you want to allocate. Except for the alignment

information, it works like malloc(), so you have to free() memory you get from it.

int *ip = aligned_alloc(alignof(int), sizeof(*ip));

double *dp = aligned_alloc(alignof(double), sizeof(*dp));

// use pointers...

free(ip);

free(dp);

The alignment argument doesn’t have to be the alignment requirement of the type

you allocate for (but you are in trouble if it is more relaxed and you try to put something

of that type there later). The size must be a multiple of the alignment, though.

Chapter 9 Dynamic Memory Management

229

Unless you are writing very specialized code, you do not need to use this function.

The other allocation functions will give you memory where you can allocate any type

of object, and this gives you memory where you can only place types that satisfy the

alignment constraints. More memory addresses are open to aligned_alloc() because it

doesn’t have to give you memory available for all types, but it is unlikely to be worth it to

try to optimize on this.

�free()
If you allocate memory on the heap, you must free it again. Local variables go out of

scope and are automatically deleted, global variables never are, but dynamic memory is

something you must explicitly deallocate when you are done using it. The function the C

standard gives you for that is free(). It takes one argument: a pointer to the memory you

wish to free.

free(p);

Do not call free() with the same value twice (unless you accidentally got the same

memory address back from a subsequent allocation). You should free memory once, and

only once, and calling free() twice with the same address is undefined behavior.

Do not free memory that wasn’t allocated with one of the four functions listed earlier

unless your platform’s documentation explicitly says that you can. Operating system–

specific allocation functions will usually have their separate deallocation functions as well.

The standard says that you can call free() with a NULL pointer, and it will do

nothing. Still, in much code, you see explicit tests for NULL before calling free(). This is

mostly anachronism from old systems where free() didn’t check for NULL. If you use a

standard-compliant compiler and runtime system, then you can safely call free() with a

NULL pointer.

A call to free() cannot fail, at least officially, so if it does, you are in deeper trouble

than we can do anything about. You have to assume that once you call free(), you have

deallocated the memory; you will not get a return value that tells you if you succeeded.

Chapter 9 Dynamic Memory Management

230

�String Operations
Without memory allocation, we couldn’t write functions that returned longer strings

in Chapter 8. We could shorten strings, but the input buffers for our functions gave us

an upper bound on how long the result of the operations could be. This was a problem

when we tried to replace a shorter string with a longer. Now we have the functionality to

deal with this, so let us try to write a new replace function.

All the functions will create new strings from input strings, and while we know that

none of the input strings have a size greater than SIZE_MAX, we do not know that the new

string won’t have. To be good citizens when allocating memory, we should check that

we do not have an overflow when we compute the size of the new buffer we allocate.

Unfortunately, checking code, and often code that handles errors, tend to get as long as

the code that does the actual job, so I prefer to hide it away a little. I will use these two

macros to check if I can add a size to a variable without exceeding the limit, and if so,

do it. Otherwise, I will jump to an error label to handle that. I know that goto has a bad

reputation, but in some cases it is unjust. If used in a structured way, such as moving

error handling code to somewhere else in your function, it makes the code cleaner and

not harder to read. There isn’t much error handling in the functions we write here—if

we cannot allocate the memory we need, we will return a NULL pointer—but I use the

goto anyway. If you prefer, replace goto error with return 0. The effect is the same. In

a more complicated function, there is more error handling, and then the goto is a better

choice.

The first macro tests if we can add a value, x, to var:

#define size_check_inc(var,x) \

 { if (SIZE_MAX - (var) < (x)) \

 goto error; \

 (var) += (x); \

 }

The second checks if we can add a product. Here, of course, we cannot check if the

product, x * y, exceeds the limit, because if it does, the damage is already done, so we

need to divide by x and check if we then have room for y. If x is zero, we cannot divide by

it, but in that case, there is room for the product; it is zero, after all, so we only jump to

error handling mode if x is greater than zero, and there isn’t room for the product.

Chapter 9 Dynamic Memory Management

231

#define size_check_inc_prod(var,x,y) \

 { if ((x) > 0 && \

 (SIZE_MAX - (var)) / (x) < (y)) \

 goto error; \

 (var) += (x) * (y); \

 }

I will write a version that works on C’s zero-terminated strings, but it is equally

simple to write a function that works on the substr data structure from Chapter 8. You

can try and modify with version to do that as an exercise.

The following function takes as input a string x and indices i and j that the caller is

responsible for guaranteeing satisfy 0 <= i <= j < strlen(x). The substring of x from

index i to (but not including) j should be replaced with the string y, and the function

should return a new string as its result.

char *replace_string(char const *x, int i, int j, char const *y)

{

 size_t xlen = strlen(x);

 size_t ylen = strlen(y);

 size_t len = xlen - (j - i) + 1; // 1 for zero terminal

 size_check_inc(len, ylen);

 char *new_buf = malloc(len);

 if (!new_buf) goto error;

 strncpy(new_buf, x, i);

 strcpy(new_buf + i, y);

 strcpy(new_buf + i + ylen, x + j);

 return new_buf;

error:

 return 0;

}

Chapter 9 Dynamic Memory Management

232

The first task is to work out the length of the output—we need to know how much

memory to allocate before we can do anything else. If x has length xlen, then x excluding

the substring we remove has length xlen - (j - i). That is the part we get from x. On

top of that, we get the characters in y, and if the length of y is ylen, the total length of the

output is len = xlen - (j - i) + ylen + 1 where the last + 1 is to make room for the

zero terminal as well. We start by setting len to xlen - (j - i) + 1. We know that this

cannot exceed SIZE_MAX, assuming i and j are valid input, because x has at least that

size. The buffer that holds x is xlen + 1 (xlen is the string length and x also has the zero

terminal). We might not be able to add ylen to this, so this assignment we need to check.

If it fails, we jump to error and return a NULL pointer.

Otherwise, we have the new length, and so we allocate a new buffer and jump to

the error handling if the allocation failed. This again means that we return a NULL

pointer to the caller. It would leave it up to the caller to deal with allocation errors—if we

continued as if nothing had happened, the program would likely crash if tried to copy

into a NULL pointer. It is undefined behavior, and we certainly do not want that. Better

to let the caller handle it. If you have a way to let them know what went wrong, then the

error handling location is where to do it. You could, for example, set the global variable

errno to something appropriate. On UNIX-compliant systems, malloc() will set it to

ENOMEM, but if it is a size overflow, ERANGE might be more appropriate. The latter is from

the C standard and used to indicate that you have used a value outside the range of a

type. Unfortunately, there is not much standard compliant you can do with general error

handling. It is up to the platform you write your code for or conventions in your program.

I am not doing anything with my error handling here, except returning NULL. That is

good enough for this book; whether it is good enough for your programs, I leave to your

discretion.

If the allocation was successful, we start copying. We need to copy the characters

in x up to (but not including) index i. The string we replace starts at index i, so x[i]

should not be copied. We cannot use strcpy() because x[i] is not necessarily the zero

terminal, but strncpy() will do what we want. If we want to copy the characters up

to index i, we want to copy i characters, so we copy i characters from x into new_buf.

It is undefined behavior if we use strcpy() or strncpy() on overlapping strings, but

since we are copying into a freshly allocated buffer, there is no risk of that. The next two

copies are simple strcpy() calls. The y string is zero-terminated, and since x is zero-

terminated, and j < xlen (the caller should guarantee this), x + j is a zero-terminated

string.

Chapter 9 Dynamic Memory Management

233

Blindly copying with strcpy() opens up for buffer overflows, but we are in the

fortunate position of having guaranteed that the buffer we write to can contain the string.

When we used strlen() to compute the length of the strings, we got a guarantee that we

would find a zero termination character in the strings. If the input strings are corrupted

and strlen() was reading beyond allocated memory, that is a problem. Still, the length

we got is the one we took into consideration when allocating new_buf, so if the allocation

was successful, then we have space to write the characters that strcpy() sees, no matter

what the strings look like. Of course, in a multithreaded environment, the strings can

change between calling strlen() and strcpy(), and this is more likely to happen if

the buffers are corrupted, but there is a limit to how much checking we can do in one

function. The strings could also be deallocated between getting their length and copying

them. Thread-safe code is beyond the scope of this book, and I will assume that our

thread is the only one looking at these buffers. Then the function is safe.

When you call the function, you either get a NULL pointer in return, indicating an

allocation error, or you get a freshly allocated string, which you must free() when you

are done with it.

char const *x = "foobarbaz";

char *y = replace_string(x, 3, 6, "");

if (y) {

 assert(strcmp(y, "foobaz") == 0);

 free(y);

} else {

 // Handle allocation error

}

As we saw in Chapter 8, if we have a replace function, we can also get an insertion

and deletion function for free:

char *insert_string(char const *x,

 int i,

 char const *y)

{

 return replace_string(x, i, i, y);

}

char *delete_string(char const *x, int i, int j)

Chapter 9 Dynamic Memory Management

234

{

 return replace_string(x, i, j, "");

}

For a more complicated example, consider a function that takes an array of

strings as input and joins them into a single string with a separator between them. For

example, with strings "foo", "bar", and "baz" and separator ":", we want the string

"foo:bar:baz". Python’s join() method on strings is the inspiration for this function. In

code, we could use it like this:

char const *strings[] = {

 "foo", "bar", "baz"

};

size_t n = sizeof strings / sizeof *strings;

char *z = join_strings(":", n, strings);

if (!z) {

 perror("Error joining string");

 exit(1); // Just bail now...

}

printf("z = %s\n", z);

free(z);

The implementation looks like this, and I will describe it as follows:

char *join_strings(char const *sep,

 int n, char const *strings[n])

{

 size_t len = 1; // 1 for zero terminal

 size_t sep_len = strlen(sep);

 size_t reps = (n > 1) ? (n - 1) : 0;

 size_check_inc_prod(len, sep_len, reps);

 for (int i = 0; i < n; i++) {

 size_t string_len = strlen(strings[i]);

 size_check_inc(len, string_len);

 }

Chapter 9 Dynamic Memory Management

235

 char *new_buf = malloc(len);

 if (!new_buf) goto error;

#define append_string(src) \

 { for (char const *p = src; *p; p++) *dst++ = *p; }

 char *dst = new_buf;

 char const *xsep = "";

 for (int i = 0; i < n; i++) {

 append_string(xsep);

 append_string(strings[i]);

 xsep = sep;

 }

 *dst = '\0';

#undef append_string

 return new_buf;

error:

 return 0;

}

As with the previous function, our first task is to work out how much memory we

need to allocate. We need at least the memory it takes to store all the input strings, and

then we need space for the separators. We compute the latter first because it is easier to

know how much memory we have to work with when checking if we get a size overflow

that way.

We start out with a length of one to store the terminal character. Then we get the

length of the separator and how many of them we need. If there is more than one string,

then we need (n - 1) repeats. We add seplen * reps to len if it doesn’t cause an

overflow. Then we start iterating through the strings. For each string, we check if we can

add it without overflow, bailing to error if we can, of course, and if there is room, add it

to the total length. Once we have computed the total length, then we can allocate a new

buffer. If the allocation fails, we bail to error once more.

Then we copy all the strings and separators. We use the variable xsep to handle the

special case of the first string. We write a separator before all strings—otherwise, we

would have to deal with a special case with the last string—but the first time we write the

separator, it is an empty string. After that, it is the function argument for the separator.

Chapter 9 Dynamic Memory Management

236

I use the macro

#define append_string(src) \
{ for (char const *p = src; *p; p++) *dst++ = *p; }

for copying into the new buffer. It copies src until it reaches the zero terminal, and it
updates the dst pointer for each copy. We start with dst pointing to the first character in
new_buf, and we will finish with it pointing at the last, where we insert the zero terminal.
The macro is only relevant in this block of code, so I undefined it after all the copying. It
refers to a variable inside the function, so it won’t work elsewhere anyway. If you do not
like using a macro like that, you can replace it with a function, but then you must update
dst after the function call. If you use one of the string_copy() functions from Chapter 7
you could write

dst = string_copy(dst, src);

for each of the copies.
As a last example, we will implement a function that does a search and replace (and

delete all occurrences if you replace a string with the empty string). We should be able to
use it like this:

x = "foobarbazbax";
z = replace_all_occurrences(x, "ba", "");
if (z) {
 printf("z == %s\n", z); // foorzx
 free(z);
} else {
 perror("Error replacing occurrences");
}

We will use the string representation we implemented in Chapter 8 and the iterator
we made for finding all occurrences of a string. The function is a little longer than the
one earlier, but the flow of the code is much the same. First, we figure out how long the
new string should be, and then we copy the bits of pieces to it. This is the code, and I will
explain it as follows:

char *replace_all_occurrences(char const *z,
 char const *x,
 char const *y)
{
 substr ssz = as_substr((char *)z);

Chapter 9 Dynamic Memory Management

237

 substr ssx = as_substr((char *)x);
 substr ssy = as_substr((char *)y);
 size_t zlen = substr_len(ssz);
 size_t xlen = substr_len(ssx);
 size_t ylen = substr_len(ssy);

 // Compute the new string's length
 size_t len = zlen + 1; // + 1 for terminal
 substr_iter iter = ssz;
 for (substr occ = next_occurrence(&iter, ssx, 0);
 !null_substr(occ);
 occ = next_occurrence(&iter, ssx, 0)) {
 len -= xlen;
 size_check_inc(len, ylen);
 }
 char *new_buf = malloc(len);
 if (!new_buf) goto error;

#define copy_range(b, e) \
{ for (char const *p = (b); p != (e); p++) *dst++ = *p; }
 char const *src = z;
 char *dst = new_buf;
 iter = ssz;
 for (substr occ = next_occurrence(&iter, ssx, 0);
 !null_substr(occ);
 occ = next_occurrence(&iter, ssx, 0)) {
 copy_range(src, occ.begin);
 copy_range(ssy.begin, ssy.end);
 src = occ.end;
 }
 copy_range(src, z + zlen);
 *dst = '\0';
#undef copy_range

 return new_buf;

error:
 return 0;

}

Chapter 9 Dynamic Memory Management

238

We want to replace all occurrences of x in the string z with the string y. We will use

the next_occurrence() iterator from Chapter 8, so we need a substr representation of

both z and x for that. We won’t necessarily need one for y, but if we copy substrings later,

and substrings of z are represented as ranges, we might as well represent y as a range. So

the first thing we do is get the range representations of the three strings.

Next, we get the length of the new string. We need to remove all the x occurrences

and replace them with y, and since we only have the iterator to give us all the

occurrences, we must iterate through it. At each step, we update the length of the

output. We start with a length that is zlen plus one for the terminal zero; if there are no

occurrences, then the return value should be a copy of z. It must be a copy because it

should be a new string we know that we can free without interfering with z. But we do

not know that we should return a copy yet because it depends on whether there are any

occurrences. If there is an occurrence, then we should remove xlen characters and add

ylen. Before we do this, however, we should check if we risk an overflow.

The natural thing might be to write

size_check_inc(len, ylen - xlen);

here because it is the difference between ylen and xlen we need to add. This will work if

ylen is larger than xlen. Incidentally, it will also work if ylen < xlen, and we only wrote

len += ylen - xlen;

because arithmetic with unsigned integers are guaranteed to work as arithmetic

modulus the largest number, in this case, SIZE_MAX. That means that len + (ylen -

xlen) is equal to (len - xlen) + ylen, even though the ylen - xlen might overflow.

(The C standard, incidentally, makes no such promises about signed arithmetic, where

it leaves under- and overflow as undefined behavior). However, because we test if we

can add ylen - xlen to len with the comparison SIZE_MAX - len < ylen - xlen,

we will have a problem if there is an overflow. If ylen < xlen, there is obviously room

for updating the string, but ylen - xlen becomes a large number, and the test will

determine that there isn’t. That is why we remove xlen from len before we check. The

two-line check is not as pretty as I would like, but I am not going to write a separate

macro just for this case.

Chapter 9 Dynamic Memory Management

239

When we have successfully computed the new size, without overflow, we allocate

the new buffer, bailing to error if the allocation fails. Then we start copying. We use

a pointer, src, that initially points to the beginning of z and after that points one past

the previous occurrence we found. The string from src to the beginning of the current

occurrence is a part of z we should copy. After copying that, we should copy y into the

buffer. Then we update src to the end of the occurrence, so it is ready for the next. When

we are done iterating, src points one past the last occurrence, or the beginning of z

if there were none, and the characters from src to the last byte in z, ssz.end, are the

terminal part of z that we should copy. Then all that remains is to zero-terminate the

new buffer, and we can return it.

�Dynamic Arrays
The string operations create new buffers of the correct size, as we need them, but

sometimes we need to adjust the size of objects to adapt to the data a program

progresses. With dynamic memory allocation, we can allocate new blocks as needed, but

it often requires that we copy our data to a new location.

Take something as simple as an array. We allocate it, fill it up, then we need to add

one more element. To handle that, we allocate an array that is one larger and put the

element there. But now we need to add one more, so we do the whole thing again,

copying all the existing elements to a new location before we can add the new element.

After inserting n elements, you might have copied 1+2+3+ … + (n – 2) + (n -1) elements,

a sum that grows as n squared. The dynamic array data structure gives you better

performance, as long as you only extend the array by appending to it. The number of

copies it takes to append n elements grows linearly instead of quadratically. You still get

the same constant-time performance for accessing and updating existing elements.

Figure 9-1.  Dynamic arrays

Chapter 9 Dynamic Memory Management

240

The data structure is simple. We have an allocated array of memory, and we keep

track of how much we have allocated and how much we have used; see Figure 9-1. An

integer dynamic array could be implemented like the following struct:

struct dynarray {

 size_t size;

 size_t used;

 int *data;

};

We can get and update elements in the data memory as we can with any other array,

and to make it easier, we can provide a macro to access the i’th element:

#define da_at(da,i) (da)->data[(i)]

If you want to know the length of the array (the used part), we can provide a macro

for that as well:

#define da_len(da) (da)->used

As should be obvious from the macros, if we access the used part of the array, we

access it as any other C array, and we get similar performance. I say similar because we

do have to look up the address of the array through a pointer, but the difference is hardly

noticeable.

When implementing the dynamic array, I will not handle overflow as different from

allocation errors, so I will use the checking macros from earlier in the chapter:

#define size_check(n,type) \

 ((SIZE_MAX / sizeof(type)) >= (n))

#define checked_malloc(n,type) \

 (size_check((n),(type)) ? \

 malloc((n) * sizeof(type)) : 0)

#define checked_realloc(p,n,type) \

 (size_check((n),(type)) ? \

 realloc((p), (n) * sizeof(type)) : 0)

If we grow to a size where this is an issue, I really don’t know how to handle it, and I

expect that allocation failure is an issue long before. So, I might as well treat them as the

same thing.

Chapter 9 Dynamic Memory Management

241

The struct itself doesn’t take up much space, so it is something I expect we allocate

on the stack. The data buffer, however, is something we must allocate on the heap. The

following function can handle that for us. It takes a dynamic array as its first argument,

passed as a pointer, so we can modify it, and then the initial used and size numbers.

You could argue that with an array that we haven’t put anything into, we haven’t

“used” anything yet, and of course, you are right. I have added that parameter to give

us something that we can also use as a normal array. With a normal array, we allocate

it with a certain size, and we can access the elements in it from the get-go. They are not

initialized until we write to them, but they are there. If you initialize a dynamic array of

size n, with n “used” entries, then you get what you would get with a C array of length n.

If you allocate it larger than the used part, you give it some room to grow with when we

append to it. We require that the caller ensure that the used part of the array is not larger

than the total size of the array.

We will require that an array always has size at least one. It prevents problems with

realloc() and zero size, and when we grow the array later, in the append operation, we

don’t have to worry about special cases when doubling zero-sized arrays.

#define MAX(a,b) (((a) > (b)) ? (a) : (b))

#define MIN_ARRAY_SIZE 1

The initialization code looks like this:

bool da_init(struct dynarray *da,

 size_t init_size,

 size_t init_used)

{

 assert(init_size >= init_used);

 init_size = MAX(init_size, MIN_ARRAY_SIZE);

 da->data = checked_malloc(init_size, *da->data);

 da->size = (da->data) ? init_size : 0;

 da->used = (da->data) ? init_used : 0;

 return !!da->data;

}

Chapter 9 Dynamic Memory Management

242

We allocate data of the given size and write it into the struct’s data field. This might

fail, but if you call da_init(), then da shouldn’t hold anything important in that field,

to begin with. We will return a false value if the allocation failed. First, however, we also

set the size and used fields. We could set them to the function’s input, which is what we

want the fields to hold if the allocation succeeded.

The caller is supposed to check if the allocation worked, so any value we put there

would be fine if it didn’t. However, as a defensive programming measure, we set the values

to zero if the allocation failed. It makes it slightly less likely that we confuse uninitialized

data as valid (although only slightly, since we do not check the array size when we access

items by index, similar to C’s arrays). If the caller forgets to check if the allocation worked,

but checks the array’s length, they will see that they have an empty array (and if they

append to it later, they might succeed instead of entering undefined behavior).

The expression !!da->data might look odd to the untrained eye. Still, it is a C idiom.

da->data is a pointer, so it evaluates to false if the pointer is NULL and true otherwise.

We want to return true if the allocation succeeded. Hence, it is the truth value of

da->data we wish to return. However, the return value of the function is bool (defined

in <stdbool.h>) and da->data is int *. We could change the return type to int * and

use it as a truth value, but that could be confusing for the reader of the code. We could

cast da->data to bool, but that is even worse. We don’t know if that cast is meaningful

because the casting rules do not guarantee that a NULL pointer gives us the value that

bool considers false. We do know, however, that if we use the ! operator, then NULL

becomes true and non-NULL becomes false. So now we have a truth value that bool

can understand; we just need to flip it, so NULL becomes false again, and non-NULL

becomes true—thus, the !!. Returning (da->data != NULL) would also work, but !! is

the common idiom.

If you allocate memory, you should also deallocate it. If you write a function that

initializes a structure for you, you also ought to write a function to clean it up later. It puts

the responsibility for correctly freeing resources on the programmer that writes the data

structure rather than the user, and it leaves a single place to update if the data structure

changes rather than every place the data structure is used. The only resource we allocate

with a dynamic array is the data field, but I still think it is appropriate to have a function

for deallocating an array. It could look like this:

void da_dealloc(struct dynarray *da)

{

 free(da->data);

Chapter 9 Dynamic Memory Management

243

 da->data = 0;

 da->size = da->used = 0;

}

We free the allocated memory, which is the primary purpose of the function. If the

allocation failed when we initialized the array, the function will still work because da->data

would then be NULL, and we are allowed to free that. After we free the memory, we set

da->data to NULL, making it safe to call da_dealloc() on it again. We are not supposed

to, but if it happens accidentally, we have prevented any harm that could come from this.

We also set the size and used integers to zero to indicate that we no longer have an array. If,

accidentally, the user tries to append to a deallocated array, without reinitializing it again

first, setting the entries this way will also make that safe. When we append, we check size

and used to see if we should reallocate, and we will use realloc() there, which can handle

a NULL pointer. The user is not supposed to do this, but there is no harm done in making it

a little safer for them making mistakes.

The way that appending works is this: if there is room behind the last element, when

used < size, then we put the new element there and increment used. If not, then we

allocate more memory and copy the existing elements (if necessary), and since there

now is extra space, we put the new element behind the previous last and increment

used. Consider Figure 9-2. Here, we start with a dynamic array of size two, with no used

entries. We can append to it twice before we run out of memory, but by the third append,

we must allocate a new memory buffer. We allocate one that is twice as big, copy the two

elements we have, and then insert the third. There is one free slot for the next append,

but after that, we once again have to allocate more memory and then copy the now four

elements. We allocated an array of size eight this time, so after copying and inserting one

element, we have three empty slots for appending. Once those are used, we have eight

elements that we need to copy when we allocate more memory.

Suppose we, as in the figure, double the size of the dynamic array every time we

run out of memory. In that case, we can argue that if we append n elements to an array,

then we do not copy more than 2n elements, and thus that we do not spend an excessive

amount of time copying (unlike if we grow the array by one element every time). You

reason like this: every time you append an element, you put two “copies” in the bank for

later. These will pay for later copying. In the figure, we insert two elements before the

first copy (but you can start with any size and do the same reasoning). That means that

we have four “copies” in the bank when we resize the array to size four. We only copy

two elements, so we have two “copies” left. That is fine; it is always good to have some

Chapter 9 Dynamic Memory Management

244

savings, and we are only arguing that we do not copy more than we have in the bank.

When we resize again, we have inserted two more elements. That added four “copies”

to the two we already had, so we have six “copies” in the bank. Four of them pay for the

copying we do when we resize to length 8. It leaves our savings at two, once again. We

have appended four more items before we resize again, which means that we have eight

new “copies” from the appending we did. Those eight can pay for copying the now eight

elements when we resize to length 16 (and we still have two left).

The reasoning works as we continue, and every time we resize, we have saved up

enough to copy (with the two original “copies” in the bank after we have copied). The

two at the beginning is a consequence of the size we started with; the larger the initial

size, the more we have leftover, but we always have at least n “copies” in the bank when

Figure 9-2.  Appending to a dynamic array

Chapter 9 Dynamic Memory Management

245

we need to copy n elements. The argument will also work if you do not double the size

every time, but grow it by any fixed factor greater than one. If it is smaller than two, you

have to put a little more in the bank, and if it is larger, you can save up a little less with

each append.

We need to write the code for resizing a dynamic array. While the preceding

reasoning only works if we resize when we append, we might as well write a general

resize function, so the user can explicitly grow or shrink the array. We obviously want

to use realloc() for resizing. It will automatically copy the objects if necessary, and we

might avoid copying altogether if the runtime system can give us more (or less) memory

without copying.

A resize function can look like this:

#define MIN(a,b) ((a) < (b)) ? (a) : (b)

bool da_resize(struct dynarray *da,

 size_t new_size)

{

 size_t alloc_size = MAX(new_size, MIN_ARRAY_SIZE);

 int *new_data =

 checked_realloc(da->data, alloc_size, *da->data);

 // If we cannot allocate, leave everything

 // as it is, but report an error

 if (!new_data) return false;

 da->data = new_data;

 da->size = alloc_size;

 da->used = MIN(da->used, new_size);

 return true; // success

}

We first make sure that we do not attempt to realloc() a zero-sized array. It will be

valid for the user to resize an array to size zero, it is one way to reset it, so subsequent

append operations add to an empty array, but we do not want the actual memory to

be an empty array. So, we make sure that we have at least MIN_ARRAY_SIZE before we

allocate.

Chapter 9 Dynamic Memory Management

246

Having a minimal array size means that we do not have to worry about reallocating

zero bytes, but we still need to check for overflow of the size, so we use the checked_

realloc() macro to call realloc(). We save the result in a new_data pointer because

we need to check if the reallocation was successful before we save the pointer in the

dynamic array structure. If the allocation didn’t succeed, we will leave the array as it is.

All the data in it is still valid, and the caller might be able to salvage the situation. If we

freed the memory and cleaned up the array, the data would be lost. So, we abort and

inform the caller that there is work to do, and leave it at that.

If the allocation succeeded, we update the data pointer (the old data will no longer

be valid if the realloc() call gave us a new memory block), and we update the size

and used values. The MIN() expression is there to allow a caller to resize an array to

shorter than the used part. We give size the alloc_size value, which we know is at least

MIN_ARRAY_SIZE, because that is how much memory we have allocated. We give used the

new_size value instead of alloc_size, so it is possible to resize the array to length zero

from the user’s perspective.

When we append, we need to check if there are more free addresses, so we compare

used and size. If they are equal, we need to allocate more memory before we can

append. Since we already have da_resize(), the only interesting bit is computing the

new size. We want to double the size, but this might not be possible. Two things could

happen: first, we could get a value that is larger than SIZE_MAX, in which case we would

get an overflow. The da_resize() function will catch if we try to allocate more integers

than we can get, but if we already have the overflow before we call that function, it

cannot help us. At a minimum, we must give it a new_size that hasn’t overflown, and 2 *

da->size could do that. Second, we might not be able to allocate twice as much memory

as we currently have, but still be able to allocate some. If we haven’t reached SIZE_MAX

yet, or SIZE_MAX / sizeof(*da->data) integers, we should still attempt a resize, even if

we cannot get all the memory we want.

We can use this macro to determine the maximum length an array of a given type

can have:

#define max_array_len(type) \

 (SIZE_MAX / sizeof(type))

It only serves the purpose of explaining what the expression SIZE_MAX /

sizeof(type) means, nothing more. Still, giving expressions names is useful for making

the code more readable. The current size cannot exceed this if the array is correctly

Chapter 9 Dynamic Memory Management

247

initialized. Neither da_init() nor da_resize() would let us allocate the data for this,

with their checked allocation macros.

We can add another macro to test if we are already at our maximum:

#define at_max_len(n,type) \

 ((n) == max_array_len(type))

If we allow our array to get to this maximum, we need to check if we are there before

we attempt to grow it in an append operation. Because if we are at max capacity, then

append should always fail.

This macro will check if we can double the current memory, and if so, do it, and

otherwise give us the maximum we could get:

#define capped_dbl_size(n,type) \

 (((n) < max_array_len(type) / 2) \

 ? (2 * (n)) : max_array_len(type))

Of course, it isn’t perfect because there are sizes in between the max and double the

current. Still, I expect that such a situation is exceedingly rare, and there is no need to

complicate the code further to deal with it. Not merely giving up if we cannot double the

memory is already being generous.

While less obvious, this is also a place where we use that dynamic arrays have size at

least one. We could have allowed zero-sized arrays (dealing with realloc() explicitly),

but then growing the size by a factor two might give us a size of zero back. Our code

assumes that when we grow the size by a factor of two, we have new, unused slots

available afterward. For that to work, two times the size of the array must be larger than

the array. It is, as long as the size isn’t zero.

So, before we append, we check if it is necessary to grow the array. If it is, we check

if we are at maximum already, in which case we fail. Otherwise, we grow it to twice the

size (or the possible maximum if that is too much). That can also fail, in which case the

append failed, but if we managed, we add the new value at the end of the array. That

part, fortunately, is simple. You put the new value at index da->used and increment the

used counter.

bool da_append(struct dynarray *da, int val)

{

 if (da->used == da->size) {

 if (at_max_len(da->size, *da->data)) return false;

Chapter 9 Dynamic Memory Management

248

 size_t new_size = capped_dbl(da->size, *da->data);

 bool resize_success = da_resize(da, new_size);

 if (!resize_success) return false;

 }

 da->data[da->used++] = val;

 return true; // success

}

To use a dynamic array, put a struct dynarray variable on the stack (or allocate it

on the heap with malloc(); you already know how to) and initialize it. After that, you

are allowed to access and update the elements between index zero and used, and if you

want, you can append to it, growing it along the way. Remember that appending can

fail, so you should check the return value. The array doesn’t break because append fails.

You keep the existing values (and you should still explicitly deallocate it later, even if you

encountered a failed operation). When you are done with the array, you must deallocate

it again by calling da_dealloc().

int main(void)

{

 struct dynarray da;

 int success = da_init(&da, 4, 4);

 if (!success) {

 printf("allocation error\n");

 exit(1);

 }

 for (int i = 0; i < da_len(&da); i++) {

 da_at(&da, i) = i;

 }

 for (int i = 0; i < da_len(&da); i++) {

 printf("%d ", da_at(&da, i));

 }

 printf("\n");

Chapter 9 Dynamic Memory Management

249

 printf("current length %zu\n", da_len(&da));

 for (int i = 0; i < 10; i++) {

 if (!da_append(&da, 10 * (i + 1))) {

 printf("allocation error");

 // we cannot append any more, but

 // the array is still in a valid state

 break;

 }

 }

 printf("current length %zu\n", da_len(&da));

 for (int i = 0; i < da_len(&da); i++) {

 printf("%d ", da_at(&da, i));

 }

 printf("\n");

 da_dealloc(&da);

 return 0;

}

You can shrink a dynamic array as well as grow it if you add an operation that

removes the last used element. In that case, you should not shrink it when it hits half the

size. You could risk that you shrink it down to a size such that it now has the maximum

capacity, and the next operation is appending. In that case, you would need to allocate

new memory and move all the array data. Then you might remove the last element

again, shrink, and copy all the elements once more. You could end up moving back and

forth that way, copying more than the analysis we did earlier allows us to. If, however,

you wait with shrinking to half the size until only a quarter of the array is in use, then you

can analyze the performance similarly and show that you still put a limit on how often

you copy. I will not implement this for dynamic arrays, but we will see shrinking in the

data structure we cover next.

Chapter 9 Dynamic Memory Management

250

�Gapped Buffers
Allocating new strings instead of modifying existing ones has its uses, and in many

applications, it makes it easier to work with strings. We can allocate exactly the memory

we need when we modify a string, and if all functions return freshly allocated memory,

we know that we should always free it. However, if you implement something like an

editor, then it is not a viable approach. Copying the entire content of a string every time

you add or remove a character will be hopelessly slow.

Imagine that we want to implement an editor, where we need each change to the

text to be fast. We don’t know the final size of the text, so we must dynamically resize

the buffer we work with as we edit. If we only appended characters to a string, then

something like the dynamic arrays would be efficient, but that is rarely the case. We need

a data structure where we can edit in the middle of a text efficiently. A simple structure

for this is the gapped buffer.

Just as we leave extra space behind the used part of a dynamic array, we leave extra

space in a gapped buffer, but since we need to insert characters anywhere in a buffer, we

do not necessarily leave it at the end. Instead, we represent a text buffer in three parts—

the string that is before the cursor and the string that comes after it and in between a gap

of free memory we can add to; see Figure 9-3.

When we insert a character, it goes at the position where the cursor sits, which, as

luck will have it, is where we have extra room (and when we do not have a gap, we will

allocate memory, so we get a gap by doubling the buffer size, as we did for dynamic

Figure 9-3.  A gapped buffer

Chapter 9 Dynamic Memory Management

251

arrays). If we need to move the cursor, we can simultaneously move a character from

before the gap to after it, if we move the cursor left, or the other way if we move it right. If

we delete a character, that is, if we delete to the right of the cursor, we can grow the gap

one to the right. If we press backspace, we can grow the gap one character to the right (by

moving the cursor one to the left). See Figure 9-4 for an example.

Figure 9-4.  Editing in a gapped buffer

Chapter 9 Dynamic Memory Management

252

We grow the buffer when we run out of gap space, and if the gap takes up too much

space, we can shrink the buffer as well to reduce our memory usage.

We can implement the data structure like this:

struct gap_buf {

 size_t size;

 size_t cursor;

 size_t gap_end;

 char *buffer;

};

The cursor and the end of the gap are offsets into buffer rather than pointers. If we

reallocate buffer, the two values could point into memory that is no longer ours to work

with, so we would need to compute offsets into new memory in any case. We might as

well use offsets in the first place.

We use the following macros to get the size of the text before and after the cursor and

the total number of used characters:

#define gb_front(buf) ((buf)->cursor)

#define gb_back(buf) ((buf)->size - (buf)->gap_end)

#define gb_used(buf) (gb_front(buf) + gb_back(buf))

This time, I will write a function that allocates a full buffer, rather than just the data,

as we did with dynamic arrays. There is no good reason for this other than to show you

that. There would be nothing wrong with putting the buffer on the stack (as long as the

actual data is allocated on the heap).

The allocation function looks like this:

#define MAX(a,b) (((a) > (b)) ? (a) : (b))

#define MIN_BUF_SIZE 1024

struct gap_buf *new_buffer(size_t init_size)

{

 struct gap_buf *buf = malloc(sizeof *buf);

 if (!buf) return 0;

 buf->buffer = malloc(MAX(init_size, MIN_BUF_SIZE));

 if (!buf->buffer) {

 free(buf);

Chapter 9 Dynamic Memory Management

253

 return 0;

 }

 buf->size = init_size;

 buf->cursor = 0;

 buf->gap_end = init_size;

 return buf;

}

We first allocate the struct. If that doesn’t work, we give up; there is nothing else for

us to try. If we can get the struct, we allocate the buffer. We have a minimum buffer

size of one kibibyte. We don’t want to waste time on tiny allocations on buffers that are

too small to matter anyway, and putting a minimal non-zero size on buffers means that

we do not need to worry about realloc()’ing zero bytes.

If the second allocation fails, we also will report a failure, but we have allocated

data now that we haven’t freed, the struct in buf. If we return now, that memory is

unreachable of our program, and we can never free it. So, we must free() it before

we return. If all succeed, however, we can initialize the gapped buffer. We set the size,

naturally, and put the cursor at the front of the buffer, and since the buffer is empty, the

end of the gap goes at the end of the buffer, init_size.

When we free the gapped buffer, we must first free the underlying buffer. The two

were allocated separately, so they must be freed separately.

void free_buffer(struct gap_buf *buf)

{

 if (!buf) return;

 free(buf->buffer);

 free(buf);

}

The if-statement at the top is there to avoid problems if a user calls free_buffer()

with NULL. They are not supposed to, but it doesn’t cost us anything to play it safe. The

order of the two free() calls is important. After free(buf), you have no guarantee that

you can get buf->buffer; it requires that you look up a value in memory that is no longer

yours. So we must free the memory in this order.

We leave the allocation code for last, as that is the most interesting, and implement

the other operations first. Moving the cursor is the simplest. We need to move a

character from the beginning to the end, or vice versa, and update the cursor position:

Chapter 9 Dynamic Memory Management

254

void cursor_left(struct gap_buf *buf)

{

 if (buf->cursor > 0) {

 buf->buffer[--buf->gap_end] =

 buf->buffer[--buf->cursor];

 }

}

void cursor_right(struct gap_buf *buf)

{

 if (buf->gap_end < buf->size) {

 buf->buffer[buf->cursor++] =

 buf->buffer[buf->gap_end++];

 }

}

The cursor index points to the first empty place in the gap, and the gap_end index

points to the first used character at the back of the buffer.

So when we move left, we need to decrement the indices before we move a character

(the character should move from the position before the cursor to the position before the

current end of the gap). When we move right, we need to increment after we copy the

character.

When we delete a character, we move the cursor to the left or the gap end to the right,

depending on the type of delete. In either case, we will resize the buffer to half its size if

we end up with less than a quarter used. The reason for that cutoff, I explained at the end

of the previous section.

void backspace(struct gap_buf *buf)

{

 if (buf->cursor > 0)

 buf->cursor--;

 if (gb_used(buf) < buf->size / 4)

 shrink_buffer(buf, buf->size / 2);

}

void delete(struct gap_buf *buf)

{

Chapter 9 Dynamic Memory Management

255

 if (buf->gap_end < buf->size)

 buf->gap_end++;

 if (gb_used(buf) < buf->size / 4)

 shrink_buffer(buf, buf->size / 2);

}

Even though shrink_buffer() will involve a reallocation, we will implement it such

that it cannot fail. We get to that later.

For inserting a character, however, we can fail if the buffer is full, and we cannot grow

it, so there we need to return a value we can check. The function looks like this:

#define capped_dbl_size(s) \

 ((s) < SIZE_MAX / 2) ? (2 * (s)) : SIZE_MAX

bool insert_character(struct gap_buf *buf,

 char c)

{

 if (buf->cursor == buf->gap_end) {

 size_t new_size = capped_dbl_size(buf->size);

 bool grow_success = grow_buffer(buf, new_size);

 if (!grow_success) return false;

 }

 buf->buffer[buf->cursor++] = c;

 return true;

}

If the cursor is at the same index as gap_end, the gap is empty, so we need to grow

the buffer. We double the size, except that we stop at SIZE_MAX if it isn’t possible. The

following grow_buffer() function will deal with attempts to grow a buffer to its current

size, so we do not explicitly test for that here. If growing the buffer fails, we report that,

and we do not insert the character—there is no place to insert it, after all. Otherwise, we

are in the situation we would be in if we didn’t have to grow in the first place. We put the

character at the current cursor position and move the cursor one forward.

When we resize a gapped array, we need to treat growing and shrinking differently.

We can use realloc() for both, but we need to move the part of the buffer after the gap

to its new location when we resize, and here growing and shrinking are asymmetric. If

we grow the buffer, we need to move some text to the end of the new memory we get,

Chapter 9 Dynamic Memory Management

256

and we cannot do that before we get that memory. If we shrink, however, we need to

move it before we resize; if the buffer shrinks, then the memory after the new size is no

longer ours to use. It might still be there if the address we got back is the same, but we are

not allowed to use it. If we get a new address, then the last part of the original data was

not moved to that location. We have to move the data before we call realloc(); only if

we do that, we have it after resizing the buffer.

For both functions, however, we need to do the same memory copy. We need to

move the data from gap_end to the end of the old buffer to the position that is gb_back()

from the end of the new buffer:

void move_back(struct gap_buf *buf,

 char *new_buf, size_t new_size)

{

 memmove(new_buf + new_size - gb_back(buf),

 buf->buffer + buf->gap_end,

 gb_back(buf));

}

The growth function will check that we are allocating more space and give us an

error otherwise. It prevents, among other things, that we try to grow the maximal size of

a buffer. Otherwise, it is similar to what we saw for dynamic arrays. We allocate a new

buffer, and if it fails, we report an error. Otherwise, we update the gapped buffer. First,

we move the data at the end of the buffer to the new position, and then we update the

size and gap_end position. We do it in the opposite order, though, because the gb_back()

macro we use to get the number of characters after the gap depends on the size, so we

cannot update the size first.

bool grow_buffer(struct gap_buf *buf, size_t new_size)

{

 // We cannot grow to a smaller (or equal) size

 if (buf->size >= new_size) return false;

 // Allocate a larger buffer

 new_size = MAX(new_size, MIN_BUF_SIZE);

 char *new_buf = realloc(buf->buffer, new_size);

 if (!new_buf) return false;

Chapter 9 Dynamic Memory Management

257

 // Move the segment to the right of the cursor

 move_back(buf, new_buf, new_size);

 // Update struct -- set end before updating

 // the size or gb_back(buf) will be wrong

 buf->buffer = new_buf;

 buf->gap_end = new_size - gb_back(buf);

 buf->size = new_size;

 return true;

}

When we shrink, we move the data and update all the meta-information before we

attempt to reallocate the buffer. If the reallocation worked, then the data is automatically

moved to the correct location, and all is well. If it didn’t, then no damage is done, as long

as the cursor, size, and gap end are placed correctly.

void shrink_buffer(struct gap_buf *buf,

 size_t new_size)

{

 // We do not resize if we lose data!

 if (new_size < gb_used(buf)) return;

 // Move the segment to the right of the cursor

 move_back(buf, buf->buffer, new_size);

 // Update struct -- set end before updating

 // the size or gb_back(buf) will be wrong

 buf->gap_end = new_size - gb_back(buf);

 buf->size = new_size;

 // Allocate a smaller buffer

 new_size = MAX(new_size, MIN_BUF_SIZE);

 char *new_buf = realloc(buf->buffer, new_size);

 if (new_buf) buf->buffer = new_buf;

}

Chapter 9 Dynamic Memory Management

258

If realloc() failed, we will still be using the old buffer, but nothing will break. We

still have a buffer to work with. True, we are using more memory than we think we are,

and it would be better to shrink it, but if we try to grow or shrink later, realloc() will

still work, and maybe we get the right size at that time. If we tried to move the data back

and restore the full gap that we have room for when a realloc() failed, on the other

hand, we could damage the runtime performance of the gapped buffer. We would copy

all the elements before attempting to shrink, then move them back, and the very next

operation could be another delete where we did the same thing. Each operation could

involve copying all the remaining elements twice. Compared to that, leaving a little

extra memory that will be freed later anyway, if we remember to deallocate our buffer, is

preferable.

In move_back(), I used the memmove() function from <string.h> rather than

strncpy(). It does the same thing, except that it won’t stop at zero terminals, and it can

handle overlapping memory. The former is not a major issue. The gapped buffer can

contain zero characters, without considering its terminal symbols, but it wouldn’t be

a problem if we didn’t allow that. As for overlapping data, we don’t expect to see that,

unless we reach the upper limit of buffer size. When we shrink the buffer, the gap takes

up three-quarters of the buffer, so when we move the data to the right of the gap forward,

we do not write into overlapping memory. When we grow the size, if we double the

buffer length, then we cannot write into overlapping memory either, unless we hit the

upper limit of SIZE_MAX. Regardless of that, however, I do not consider the buffer content

a C string, which is what strncpy() is made for, but rather a chunk of memory that I

need to move, and then I prefer to use memmove(). You are unlikely to get into trouble if

you use strncpy() instead.

Chapter 9 Dynamic Memory Management

259
© Thomas Mailund 2021
T. Mailund, Pointers in C Programming, https://doi.org/10.1007/978-1-4842-6927-5_10

CHAPTER 10

Generic Dynamic Arrays
Before we move on to the next topic, recursive data structures, I would like to take a short

intermezzo and look at dynamic arrays once more. We implemented dynamic arrays for

integers, but in this chapter, we will explore techniques to implement generic dynamic

arrays, that is, dynamic arrays that will work with any data type. Some of the methods

relate to pointers, so it is not entirely outside of this book’s scope, but not all. Still, I feel I

would be neglecting an essential topic if I introduced dynamic arrays and not say a few

words about how you can generalize the code to work with more than one type. I will

touch upon generic code in later chapters as well, but not in the level of details as I will

in this chapter. I will trust that you can generalize what you see here to other cases.

C has limited support for generic code, bordering on nonexistent. We do not have

a template mechanism like C++ or generics as in Java. There is one data type we can

consider generic, void *, and that is only if we are feeling generous. We can assign any

pointer to a void pointer and get it back again, and that is as far as void pointers take us.

It is enough for our first attempt at a generic dynamic array, however, and in many cases,

this suffices. If we are willing to do a little more work, we can map all types of objects into

buffers indexed by character pointers. If the objects are correctly aligned, this is a valid

way to store objects and get pointers to them. That will be our second attempt.

An alternative approach to void */char * representations is to generate code using

macros. The C preprocessor is a primitive programming language, with little more than

simple text replacement functionality. Still, it is enough that we can write template

code that we can then instantiate with the types we need. We will explore two different

approaches using this in our third and fourth attempts.

None of the approaches is superior to the others; rather, they have different strengths

and weaknesses, so you would choose between them, or mix them at times, based on

your applications. When you need generic code, however, it is typically a variant of these

four you use.

https://doi.org/10.1007/978-1-4842-6927-5_10#DOI

260

�Void Pointers
We can use void pointers as a generic type because we are allowed to store any data

pointer type in them.1 Using void * for our data is the simplest way to implement

a generic data structure. For dynamic arrays, we only require minimal changes. We

used *da->data every time we needed the size of the underlying data, for testing size

overflow and computing array sizes, so we have already done most of the work to deal

with alternative types. We need to update int to void in a few places (I have highlighted

where in the following code listing), but most of our code remains the same:

struct dynarray {

 size_t size;

 size_t used;

 // Update int * => void **

 void **data;

};

#define da_at(da,i) (da)->data[(i)]

#define da_len(da) (da)->used

bool da_init(struct dynarray *da,

 size_t init_size,

 size_t init_used)

{

 assert(init_size >= init_used);

 init_size = MAX(init_size, MIN_ARRAY_SIZE);

 da->data = checked_malloc(init_size, *da->data);

 da->size = (da->data) ? init_size : 0;

 da->used = (da->data) ? init_used : 0;

 return !!da->data;

}

1�I write “data” pointer explicitly, because the C standard does not guarantee that we can store
function pointers in them, but that isn’t important here. Any pointer to data can be assigned to
void *, and you can safely get the pointer value back. You don’t even need casts to do so.

Chapter 10 Generic Dynamic Arrays

261

void da_dealloc(struct dynarray *da)

{

 free(da->data);

 da->data = 0;

 da->size = da->used = 0;

}

bool da_resize(struct dynarray *da,

 size_t new_size)

{

 size_t alloc_size = MAX(new_size, MIN_ARRAY_SIZE);

 // Updated int * => void **

 void **new_data =

 checked_realloc(da->data, alloc_size, *da->data);

 if (!new_data) return false;

 da->data = new_data;

 da->size = alloc_size;

 da->used = MIN(da->used, new_size);

 return true;

}

// Update val type int => void *

bool da_append(struct dynarray *da, void *val)

{

 if (da->used == da->size) {

 if (at_max_len(da->size, *da->data)) return false;

 size_t new_size = capped_dbl(da->size, *da->data);

 int resize_success = da_resize(da, new_size);

 if (!resize_success) return false;

 }

 da->data[da->used++] = val;

 return true;

}

Chapter 10 Generic Dynamic Arrays

262

I didn’t include the various macros we used for size checking and allocation, since

they do not change. They got the sizes from da->data, and they will automatically work
with the new type.

You can define and initialize a dynamic array as before:

struct dynarray da;
bool success = da_init(&da, 0, 0);
if (!success) {
 printf("allocation error\n");
}

but if you want to use it for a type such as int, you cannot use a literal value any longer.
You cannot write

da_append(&da, 42);

for example, because while you can store all pointer values in a void *, you cannot store
all values, and 42 is an int and not a pointer. You cannot take an address of a value either,
so this will not work:

da_append(&da, &42);

If you want to insert an integer (or any other non-pointer type), you need a variable
you can take the address of:

int i = 13;
da_append(&da, &i);

or you need a compound initializer:

da_append(&da, &(int){42});

In both cases, you create local (stack-allocated) variables and use their addresses.
This is not in itself a problem. We designed the dynamic array to be something we would
stack allocate, so it might not be a problem to stack allocate the values either. Still, often,
we do not want to put too much memory on the stack because it is a limited resource, so
it is not ideal. Worse than that, however, is how easily we can get into trouble with storing
local variables if we really intend to store their values. You might think that this would
insert values zero to four into a dynamic array:

for (int i = 0; i < 5; ++i) {
 da_append(&da, &i);

}

Chapter 10 Generic Dynamic Arrays

263

but you are, obviously, inserting the same address five times, and when the loop

terminates, the integer at that address has value 5, and that is what the five “values”

in the dynamic array have. Worse, once the loop ends, the variable goes out of scope,

and its memory can be reused by the compiler for something else. If you turn on

optimization, most likely the i in these two loops will use the same memory:

for (int i = 0; i < 5; ++i) {

 da_append(&da, &i);

}

for (int i = 10; i < 15; ++i) {

 printf("%p %d\n", (void *)&i, i);

}

(you need something like the printf() call to prevent the compiler from optimizing

the second loop away entirely). When I test this code, the array contains five times 15

afterward.

Using literal compounds won’t help you either. You get one location in memory for

where they sit, so even if you write code like this:

for (int i = 0; i < 5; ++i) {

 da_append(&da, &(int){i});

}

you do not get what you want. It will insert five times 4 in the array (and like all stack

memory, it will be reclaimed later; we are not copying the value but storing a stack

location).

If you want to store values in this void * dynamic array, you should dynamically

allocate it to avoid all these issues.

for (int i = 0; i < 5; ++i) {

 int *p = malloc(sizeof *p);

 if (!p) continue;

 *p = i;

 da_append(&da, p);

}

Chapter 10 Generic Dynamic Arrays

264

Then, of course, you have to remember to deallocate it again later:

for (int i = 0; i < da_len(&da); i++) {

 free(da_at(&da, i));

}

da_dealloc(&da);

Then may the gods have mercy on your soul if you happened to put a local variable

in the array as well; trying to free stack variables only leads to tears and misery.

Furthermore, of course, getting values back as integers does not give us pretty code

because we need to both cast and dereference the values:

for (int i = 0; i < da_len(&da); i++) {

 printf("%d ", *(int *)da_at(&da, i));

}

This, however, can be fixed with a macro:

#define da_at_as(da,i,type) *(type *)da_at(da,i)

and then

for (int i = 0; i < da_len(&da); i++) {

 printf("%d ", da_at_as(&da, i, int));

}

I know that it now looks like this is a poor solution to generic dynamic arrays, but it

isn’t all that bad. All the problems we see are because we want to store non-pointer types

in the array. If your application works with heap-allocated objects, then this dynamic

array implementation is ideal. It is simple and efficient code; it handles your objects

without issues, as they are already pointers (and you have to free the objects anyway), so

it does not give you extra work. In many applications, this solution is the optimal choice.

It just isn’t ideal when what you want to store is not pointers.

The only thing you lose with this solution if you are working with heap-allocated

objects anyway is type-checking. Since you can assign between any pointer type and

void * without explicit casts, you can write code such as

double *dp = malloc(sizeof *dp);

if (!dp) { /* deal with error */ }

*dp = 3.14;

Chapter 10 Generic Dynamic Arrays

265

da_at(&da, i) = dp;

// do some processing

int *ip = da_at(&da, i);

// now ip points to a double, and that is

// probably a bad thing

Here, ip may point to a double, if the index i didn’t change. We are not even

guaranteed that because we are only guaranteed that we get the original value back

when we assign the value in a void * back to the correct pointer type. But even if we

have the right address, we should not attempt to treat the data at this address as an int if

it was a double when we assigned to it. We cannot mix types that way.

I would say that this small breach of type safety is worth what we get for a simple and

efficient dynamic array for pointers, though.

�Generic Memory Buffer
If we want to store objects other than pointers in a dynamic array, we can also do that in

a generic way. We can allocate memory that fits the kind of objects we want to store in

the array, compute indices into it based on the object size, and copy data into it when we

add elements to the array.

We will not tailor the dynamic array to a specific type, but store the object size in it.

Because of that, we must update all our overflow and size computation macros, so they

work with an object size value instead of a type. Everywhere there was a type before, we

make the parameter an object size, obj_size:

#define size_check(n,obj_size) \

 ((SIZE_MAX / (obj_size)) >= (n))

// Use object size instead of type

#define checked_malloc(n,obj_size) \

 (size_check((n),(obj_size)) ? \

 malloc((n) * (obj_size)) : 0)

#define checked_realloc(p,n,obj_size) \

 (size_check((n),(obj_size)) ? \

 realloc((p), (n) * (obj_size)) : 0)

Chapter 10 Generic Dynamic Arrays

266

#define max_array_len(obj_size) \

 (SIZE_MAX / obj_size)

#define at_max_len(n,obj_size) \

 ((n) == max_array_len(obj_size))

#define capped_dbl(n,obj_size) \

 (((n) < max_array_len(obj_size) / 2) \

 ? (2 * (n)) : max_array_len(obj_size))

Otherwise, the macros stay the same. The only difference is how we get the size of an

individual object.

In the dynarray struct, we add an obj_size, and we change the type of data to

char *. We can access all memory with character pointers, so it is a pointer type of

choice for what we will do.

struct dynarray {

 size_t size;

 size_t used;

 // Added size of objects

 size_t obj_size;

 // Update int * => char *

 char *data;

};

When we access elements in the array, we need to compute their offset. If the type of

data matches the size of the objects, C will do it for us when we do pointer arithmetic. In

an integer array, data[i] is the i’th integer. When we have a char * buffer for our data,

and the objects have size obj_size, we must do the computation ourselves. To get the

i’th item, we have to multiply i with obj_size:

#define da_get(da,i) \

 (void *)((da)->data + (i) * (da)->obj_size)

The void * cast is there, so we can assign the address to a pointer of the right type

without explicit casting if we so wish.

Chapter 10 Generic Dynamic Arrays

267

With this macro, we still work with pointers, although we intend to store any kind

of value in the dynamic array. There is no way around that. When we don’t know which

type we are implementing the array for, we only have raw memory to work with. If the

user can tell us the type, however, we can of course cast and dereference values, so we

can supply a macro for that:

#define da_at_as(da,i,type) *(type *)da_at(da,i)

With this macro, we can write code such as

// get i'th element as int

int i = da_at_as(da, i, int);

// add i to j'th element (as int)

da_at_as(da, j, int) += i;

and mostly treat the items as values. We cannot get C to automatically infer the type,

however. It is not that smart.

With da_at_as(), we can both read and write to values in the array, by providing the

type—but be careful here because if the type doesn’t match the obj_size in the array,

you are heading for disaster. The previous solution was polymorphic, in the sense that

you could store any pointer type in the same dynamic array, but this solution is not.

The array expects to store one type of objects—or at least store objects of the exact same

size—so do not let the polymorphic nature of da_at_as() fool you.

Initializing the array only changes slightly. We take the size of objects as a parameter,

use it in the allocation computations, and store it in the struct:

bool da_init(struct dynarray *da,

 size_t init_size,

 size_t init_used,

 size_t obj_size)

{

 assert(init_size >= init_used);

 init_size = MAX(init_size, MIN_ARRAY_SIZE);

 // Use obj_size for the size parameter

 da->data = checked_malloc(init_size, obj_size);

 da->size = (da->data) ? init_size : 0;

 da->used = (da->data) ? init_used : 0;

 // Remember the object size

Chapter 10 Generic Dynamic Arrays

268

 da->obj_size = obj_size;

 return !!da->data;

}

We do not need to update da_dealloc() because it didn’t rely on the underlying type

to begin with.

void da_dealloc(struct dynarray *da)

{

 free(da->data);

 da->data = 0;

 da->size = da->used = 0;

}

When we resize, we need to change the type of the new buffer—it was int * in the

previous chapter, but we need it to be char * now—and we need to use the obj_size

instead of type for the allocation computations.

bool da_resize(struct dynarray *da,

 size_t new_size)

{

 size_t alloc_size = MAX(new_size, MIN_ARRAY_SIZE);

 // Updated int * => char * and use obj_size

 char *new_data =

 checked_realloc(da->data, alloc_size, da->obj_size);

 if (!new_data) return false;

 da->data = new_data;

 da->size = alloc_size;

 da->used = MIN(da->used, new_size);

 return true;

}

Append cannot use the type of the items to assign to the next free position because

it doesn’t know the type. This means that, to append an element to the dynamic array,

we must move the bytes of objects, for which we need addresses, that is, pointers. A void

pointer will work for the data argument, and since we already know the object size, we

know how much to copy.

Chapter 10 Generic Dynamic Arrays

269

// val has type void * instead of int

bool da_append(struct dynarray *da, void *val)

{

 if (da->used == da->size) {

 if (at_max_len(da->size, da->obj_size)) return false;

 size_t new_size = capped_dbl(da->size, da->obj_size);

 int resize_success = da_resize(da, new_size);

 if (!resize_success) return false;

 }

 // copy memory...

 memcpy(da->data + da->used * da->obj_size,

 val, da->obj_size);

 da->used++;

 return true;

}

This means that we cannot append values, but only objects we can get the address

of. You cannot, for example, append an integer:

da_append(&da, 13);

but you can append a compound expression:

da_append(&da, &(int){ 13 });

The values are copied into the array, however, so

for (int i = 0; i < 5; ++i) {

 da_append(&da, &i);

}

will add the numbers zero to four to the array, and changing i after we have appended its

value doesn’t change the item in the array.

There are cases where a solution such as this is useful, where we administrate an

array of objects of a type where we only know the size. We do not need to worry about

heap-allocating all objects we put into the array. However, the type-checking is more

of an issue here than in the previous solution. The da_at_as() macro is particularly

problematic since we cast raw memory and interpret it as a type that may or may not

Chapter 10 Generic Dynamic Arrays

270

match the objects in the array. With the void pointer solution, at least we knew that we

were accessing pointers, but here we could easily get buffer overflows if we supplied the

wrong type when we access the element in an array. This solution requires that we are

ultra-careful about using arrays correctly, only accessing them using the correct type.

The next solution gives us type-checking back, by generating code for each type we

use dynamic arrays for.

�Code Generating Macros
We can use macros to generate type-specific dynamic array code. That way, we get

type-safe code, and without implementing separate structures for each type, we want

to put in our array. The only real drawback is that the executable will have to contain

separate functions for each code as well, so the size of your program grows. This is rarely

a problem, unless you write programs for small embedded systems, though, so not

something that should detract of this approach.

We need to parameterize the dynamic array type, with the underlying type of objects,

so we need a macro to generate the struct type. It can look like this:

#define GEN_DYNARRAY_TYPE(TYPE) \

 typedef struct { \

 size_t size; \

 size_t used; \

 TYPE *data; \

 } TYPE##_dynarray;

We use a typedef here to name the new type. We could equally well have defined the

name of the struct:

#define GEN_DYNARRAY_TYPE(TYPE) \

 struct TYPE##_dynarray { \

 size_t size; \

 size_t used; \

 TYPE *data; \

 };

but if we are defining a type, we might as well typedef. The name of the type will be

<type>_dynarray where <type> is the type we generate it for, so writing

Chapter 10 Generic Dynamic Arrays

271

GEN_DYNARRAY_TYPE(int)

will generate a type called int_dynarray whose data will be of type int. Likewise

GEN_DYNARRAY_TYPE(double)

will generate a type called double_dynarray with a double pointer for data.

Because we generate a name from the type parameter, there are some restrictions on

what we can use. If the parameter has spaces in it, for example:

GEN_DYNARRAY_TYPE(long long)

or

struct point { double x, y; };

GEN_DYNARRAY_TYPE(struct point)

the compiler will complain. All is not lost, however, because we can always typedef such

types, so we can generate a name. This will work fine for creating a dynamic array of

points:

typedef struct { double x, y; } point;

GEN_DYNARRAY_TYPE(point)

This restriction on type names is the only limitation the macro has. The code

generating macros we see later have the same restriction, for the same reason. We

cannot get around it when we use macros to generate names.

The macro for accessing objects by index doesn’t have to change, but it is type-safe

now because it accesses the right type of objects. Getting the length (or the used number

of objects) is the same as before as well.

#define da_at(da,i) (da)->data[(i)]

#define da_len(da) (da)->used

To get the array functions, we can take the code for the integer dynamic array from

the previous chapter and replace int with TYPE the relevant places, which are a few

places since we used *da->data in all the macros that worked on the array’s size.

We need to set the correct type of dynamic arrays from the function arguments, TYPE##_

dynarray, in the resize function new_data should have type TYPE *, and in the append

function, the parameter val should have type TYPE. That is all.

Chapter 10 Generic Dynamic Arrays

272

#define GEN_DYNARRAY_FUNCTIONS(TYPE) \

bool TYPE##_da_init(TYPE##_dynarray *da, \

 size_t init_size, \

 size_t init_used) \

{ \

 assert(init_size >= init_used); \

 init_size = MAX(init_size, MIN_ARRAY_SIZE); \

 da->data = \

 checked_malloc(init_size, *da->data); \

 da->size = (da->data) ? init_size : 0; \

 da->used = (da->data) ? init_used : 0; \

 return !!da->data; \

} \

 \

void TYPE##_da_dealloc(TYPE##_dynarray *da) \

{ \

 free(da->data); \

 da->data = 0; \

 da->size = da->used = 0; \

} \

 \

bool TYPE##_da_resize(TYPE##_dynarray *da, \

 size_t new_size) \

{ \

 size_t alloc_size = \

 MAX(new_size, MIN_ARRAY_SIZE); \

 TYPE *new_data = \

 checked_realloc(da->data, \

 alloc_size, *da->data); \

 if (!new_data) return false; \

 da->data = new_data; \

 da->size = alloc_size; \

 da->used = MIN(da->used, new_size); \

 return true; \

} \

Chapter 10 Generic Dynamic Arrays

273

 \

bool TYPE##_da_append(TYPE##_dynarray *da, \

 TYPE val) \

{ \

 if (da->used == da->size) { \

 if (at_max_len(da->size, *da->data)) \

 return false; \

 size_t new_size = \

 capped_dbl(da->size, *da->data); \

 int resize_success = \

 TYPE##_da_resize(da, new_size); \

 if (!resize_success) return false; \

 } \

 da->data[da->used++] = val; \

 return true; \

}

That macro generates all the functions, so we get a complete implementation of a

dynamic array of type T by invoking

GEN_DYNARRAY_TYPE(T)

GEN_DYNARRAY_FUNCTIONS(T)

If we want to use the same type of dynamic array in more than one place in our code,

however, we must be careful. We cannot generate the functions with the same name

more than once, or we will get problems with the linker. It is hardly a problem, though,

since we can add a macro that generates the prototypes for the functions:

#define GEN_DYNARRAY_PROTOTYPES(TYPE) \

bool TYPE##_da_init (TYPE##_dynarray *da, \

 size_t init_size, \

 size_t init_used); \

void TYPE##_da_dealloc(TYPE##_dynarray *da); \

bool TYPE##_da_resize (TYPE##_dynarray *da, \

 size_t new_size); \

bool TYPE##_da_append (TYPE##_dynarray *da, \

 TYPE val);

Chapter 10 Generic Dynamic Arrays

274

Then, to get a dynamic array of, say, int objects, you can put

GEN_DYNARRAY_TYPE(int)
GEN_DYNARRAY_PROTOTYPES(int)

in a header file, say int_dynarray.h, and

GEN_DYNARRAY_FUNCTIONS(int)

in an implementation file, int_dynarray.c.
That is it! That is all there is to generating the code for a dynamic array using macros.

If you have a type, and the preceding macros, you can automatically generate the code to
work on a dynamic array of that type:

typedef struct { double x, y; } point;
GEN_DYNARRAY_TYPE(point)
GEN_DYNARRAY_FUNCTIONS(point)

We use a generated dynamic array the same way as we used the int array in the
previous section, and since all the functions know the type, our code is checked by the
type-checker.

int main(void)
{
 point_dynarray pda;
 bool success = point_da_init(&pda, 0, 0);
 if (!success) exit(1); // bail out

 for (int i = 0; i < 5; i++) {
 success = point_da_append(
 &pda, (point){ .x = i, .y = i }
);
 if (!success) break;
 }

 for (int i = 0; i < da_len(&pda); i++) {
 point *p = &da_at(&pda, i);
 printf("<%.1f, %.1f>\n", p->x, p->y);
 }

 point_da_dealloc(&pda);

 return 0;

}

Chapter 10 Generic Dynamic Arrays

275

�Inlining Macros
If you are okay with generating code for each type we need a dynamic array of, then
maybe you are okay with generating code for each operation as well. We can write
macros that inline the operation code each place we use them. We get the same type
safety as we get with the generated functions because the generated code knows the type
of each dynamic array we operate on. Inlining code can be faster than calling functions
(at the cost of slightly larger programs, since the same code is repeated everywhere we
do an operation on a dynamic array).

If we inline all the code, we don’t have to muck about with extra files for the
generated functions, but it comes with two drawbacks. First, error handling, as we shall
see, is slightly more complicated—if you are brave enough to ignore it, you get simpler
code, but you probably shouldn’t ignore errors. Second, if you have a programming
error, the response you get from the compiler is harder to understand. It will refer to code
expanded from a macro, which means you need to understand that to fix the problem.
With functions, we never have to worry about the implementation and only the interface;
with inlined macro code, we are not so lucky.

But let’s get to it. First, the macros for getting an item in an array and for getting the
length of an array: They will not change much, but now that we do not use functions
that take pointer arguments, there is no reason to work with the addresses of arrays, so
we make the macro work directly with the array object and not a pointer to it (we use .
instead of ->):

#define da_at(da,i) ((da).data[(i)])
#define da_len(da) ((da).used)

This means that we will be calling them as da_at(da,i) and da_len(da) instead of
da_at(&da,i) and da_len(&da) and still have a consistent calling convention for all the
operations.

We need a macro for defining the dynamic array struct, but this time we will not
use one that creates a type definition. Instead, we will write a macro that gives us an
anonymous struct with the right elements:

#define dynarray(TYPE) \
struct { \
 size_t size; \
 size_t used; \
 TYPE *data; \

}

Chapter 10 Generic Dynamic Arrays

276

Notice that there is not a semicolon at the end. The intended use for the macro is to

define dynamic array objects with syntax such as

dynarray(int) int_da; // a dynamic array of int

dynarray(double) double_da; // a dynamic array of double

Since we are not generating a name, we do not have the issue with what type names

we can use, so you can also declare a dynamic array of points like this:

struct point { double x, y; };

dynarray(struct point) point_da;

We need an operation for initializing an array. With the function solution that we

have used so far, we would get a status value back to see if the allocation was successful.

As a first attempt, we can try to do the same with a macro expansion. In C, you cannot

make a general sequence of statements into an expression you can get a value from, so

while it would be nice if we could simply take the function body from the previous code

and turn into an expression, it might not be possible. There are compiler extensions that

allow it. For example, in GCC and Clang you can use so-called statement expressions and

write

#define da_init(da, init_size, init_used) \

({(da).data = \

 checked_malloc(MAX(init_size, MIN_ARRAY_SIZE), \

 *(da).data); \

 (da).size = (da).data ? init_size : 0; \

 (da).used = (da).data ? init_used : 0; \

 !!da.data;})

We enclose the code in curly brackets and then parentheses, and we get code that

returns a value. We could use this macro like

dynarray(int) int_da;

bool success = da_init(da, 0, 0);

This isn’t portable C, however, and if you switch to another compiler, it likely won’t

work. If all the statements are expressions, and not variable definitions or control

structures like if, for, and such, then we can achieve the same with the comma operator.

If you put commas between expressions, you evaluate them in turn, and the result is the

Chapter 10 Generic Dynamic Arrays

277

result of the last expression. We only have simple statements in the initialization code,

so we could replace all the semicolons with commas, put them in parentheses, and get

what we want:

#define da_init(da, init_size, init_used) \

((da).data = \

 checked_malloc(MAX(init_size, MIN_ARRAY_SIZE), \

 *(da).data), \

 (da).size = (da).data ? init_size : 0, \

 (da).used = (da).data ? init_used : 0, \

 !!da.data)

With resize and append, however, we both need if-statements and need to define a

variable to hold freshly allocated memory, so we don’t overwrite the array’s data if the

realloc() failed. We might be able to handle if-statements with the ?: operator, but

defining variables will be a problem. We will need another solution for those operations,

so to keep the code consistent, we should go with an initialization operation that can

also work for the other two. One option, which we will take, is to require that the user

provide a variable that we can write the status to:

#define da_init(da, status, init_size, init_used) \

do { \

 (da).data = \

 checked_malloc(MAX(init_size, MIN_ARRAY_SIZE), \

 *(da).data); \

 (da).size = (da).data ? init_size : 0; \

 (da).used = (da).data ? init_used : 0; \

 status = !!da.data; \

} while (0)

The second argument to the macro must be a variable that we can write to, and it is

that variable that the caller must check to see if the allocation was successful. The caller

cannot test on a return value; they must provide a variable. Still, if we are serious about

testing that an allocation worked (and we should be), then it is not a high price to pay for

consistency—and we will need it later anyway.

Chapter 10 Generic Dynamic Arrays

278

The status variable is the second argument, and I would like to say it is second only

to the dynamic array because it is so important to test for success, but the honest answer

is that I would have preferred it to be last because it functions like a return value. However,

the append operation, for reasons that I will explain later, cannot have the status

parameter last, and as we seek consistency, the initialization won’t get it either, then.

If you are puzzled by the do-while around the code, I can briefly explain. It is a C

idiom that lets you use a macro expansion as a statement. Imagine that we define the

macro

#define FOOBAR(x) foo(x) ; bar(x)

and use it in some code as

FOOBAR(42);

That is fine; it expands to two function calls:

foo(42) ; bar(42);

Now put it in an if-statement:

if (x > 0)

 FOOBAR(x);

and it expands to

if (x > 0)

 foo(x) ; bar(x);

where bar(x) will be called regardless of the value of x, since only foo(x) is in the body

of the if-statement. This is probably not what the caller intended. You could complain

that the user should have written

if (x > 0) {

 FOOBAR(x);

}

but the fact is that the curly braces are not necessary in C, if the if body only has a

single statement. We should write our macros such that they cause the least confusion,

especially if the user invokes them in what would be valid C if we had a function instead

of a macro.

Chapter 10 Generic Dynamic Arrays

279

You could try to fix it with curly brackets:

#define FOOBAR(x) { foo(x) ; bar(x); }

Then the expansion of

if (x > 0)

 FOOBAR(x);

becomes

if (x > 0)

 { foo(x) ; bar(x); };

which will work. However

if (x > 0)

 FOOBAR(x);

else

 baz(x);

becomes

if (x > 0)

 { foo(x); bar(x); };

else

 baz(x);

and the semicolon after the macro expansion, before else, is a syntax error. If you use

brackets like this, you have to leave out the semicolon in FOOBAR(x):

if (x > 0)

 FOOBAR(x)

else

 baz(x);

which then would break again if we changed the macro definition to something that is a

single expression.

Chapter 10 Generic Dynamic Arrays

280

A do-while loop is a single statement, in which we can group as many statements as

we like. When we write while(0), we will only execute the loop body once, so the effect

is the same as if we had grouped a sequence of statements.2 It has the added benefit that
we can use a break statement to leave the sequence of expanded statements, something

we will exploit shortly.

In the da_resize() function, we used the type of the array when we allocated new_data.

One way to get it into the macro is to make it an argument, like we did for defining the

dynamic array structure.

#define da_resize(da, status, type, new_size) \

do { \

 size_t alloc_size = \

 MAX(new_size, MIN_ARRAY_SIZE); \

 type new_data = \

 checked_realloc((da).data, \

 alloc_size, *(da).data); \

 if (!new_data) { status = false; break; } \

 (da).data = new_data; \

 (da).size = alloc_size; \

 (da).used = MIN((da).used, new_size); \

 status = true; \

} while (0)

or we could use compiler extensions like GCC and Clang’s __typeof__ macro to get it

from the struct:

#define da_resize(da, status, new_size) \

do { \

 size_t alloc_size = \

 MAX(new_size, MIN_ARRAY_SIZE); \

 __typeof__(da.data) new_data = \

 checked_realloc((da).data, \

 alloc_size, *(da).data); \

 if (!new_data) { status = false; break; } \

2�An optimizing compiler can easily see that we will never run the body more than once, and
simplify the code, so there is no overhead to it.

Chapter 10 Generic Dynamic Arrays

281

 (da).data = new_data; \

 (da).size = alloc_size; \

 (da).used = MIN((da).used, new_size); \

 status = true; \

} while (0)

However, that would be compiler specific and not portable. Luckily, as it turns

out, we do not need to know the type of data we allocate. It is, after all, just a chunk of

memory until we assign it to the struct’s data field. So, we can leave it as a void pointer,

which is what we get from realloc() in the first place.

#define da_resize(da, status, new_size) \

do { \

 size_t alloc_size = \

 MAX(new_size, MIN_ARRAY_SIZE); \

 void *new_data = checked_realloc((da).data, \

 alloc_size, *(da).data); \

 if (!new_data) { status = false; break; } \

 (da).data = new_data; \

 (da).size = alloc_size; \

 (da).used = MIN((da).used, new_size); \

 status = true; \

} while (0)

We once again have the status parameter that we use for reporting allocation errors,

and if we couldn’t allocate, we use break to bail out of the rest of the code. We can use

break because we put the code in a do-while body.

As a stylistic issue, some object to macros that declare variables, as we do here with

alloc_size and new_data. The macro declares variables that the user cannot directly see

when using the macro. The statements are in their own block, so we will not get name

clashes or overwrite existing variables, but if a macro declares a variable, it can shadow

another variable.

Chapter 10 Generic Dynamic Arrays

282

Shadowing variables is often a source of errors. For example, in

int i;

// some code

for (int i = 0; i < n; i++) {

 // more code

 foo(i);

}

did we intend to call foo(i) with the first i or the iteration variable? Generally, we

should avoid overshadowing. In the macro, the variables we introduce only live for the

duration of the array operation, and we cannot accidentally use the values they hold

in our code. So, why is it a problem? It is a problem because some compilers will, with

the right compilation flags, warn you about shadowing variables or even turn them into

errors. This is a good thing, as it can help you avoid errors, but it will not work if you use

macros such as the one we just wrote—at least if they accidentally generate a variable

that shadows another.

For the size variable, we can easily replace it with the expression we used to compute

it. It is a value that we can compute without needing a variable. We cannot get rid of

new_data as easily, however, as we need a place to store the allocated memory until we

can assign it into the dynamic array. We cannot recompute it. If we check the call of one

realloc() to see if it was a success and then assign the result of a second call into the

array, then the second call could fail. That would leak memory, and we would have a

NULL pointer in a dynamic array that thinks it has data. With the way that we implement

dynamic arrays in this section, we need to declare variables in the macro expansion. If

we accept that we can lose our data (though not leak memory) when an allocation fails,

we can avoid them. I will show you an example in the next section. For now, however,

you will have to live with this potential issue.

Append looks much like the function version, except that we use break instead of

return when resizing isn’t possible, or failed, and we use the status argument to report

errors.

#define da_append(da, status, val) \

do { \

 if ((da).used == (da).size) { \

 if (at_max_len((da).size, *(da).data)) \

 { status = false; break; } \

Chapter 10 Generic Dynamic Arrays

283

 size_t new_size = \
 capped_dbl((da).size, *(da).data); \
 da_resize(da, status, new_size); \
 if (!status) break; \
 } \
 (da).data[(da).used++] = val; \
 status = true; \
} while (0)

There is an issue here that is not obvious at first glance. We want to be able to append

arbitrary expressions (that evaluate to the correct type), so we would expect code like

this to work:

// MACRO CODE HERE

struct point { double x, y; };

int main(void)

{

 bool success = true;

 dynarray(struct point) pda;
 da_init(pda, success, 0, 0);

 if (!success) goto error;

 for (int i = 0; i < 5; i++) {
 // APPENDING A POINT...THIS WILL FAIL

 da_append(

 pda, success,

 (struct point){ .x = i, .y = -i }
);

 if (!success) goto error;
 }

 for (int i = 0; i < da_len(pda); i++) {
 printf("<%.1f,%.1f> ",

 da_at(pda, i).x,

 da_at(pda, i).y

);

 }

Chapter 10 Generic Dynamic Arrays

284

 printf("\n");

 da_dealloc(pda);

 return 0;

error:

 da_dealloc(pda);

 return 1;

}

You will find that the expression

da_append(

 pda, success,

 (struct point){ .x = i, .y = -i }

);

fails, however. The problem is that macros are pretty dumb. The C preprocessor doesn’t

understand C, and it doesn’t see (struct point){ .x = i, .y = -i } as a single

argument. There is a comma in it, so it sees two arguments, (struct point){ .x = i

and .y = -i }. The preprocessor works with raw strings and not C expressions, and it

doesn’t care that you intended the argument to be C expressions; if you have a comma,

you have more than one argument.

Since C99, the preprocessor has had so-called variadic macros, that is, macros that

take a variable number of arguments. The standard gives you very little to work with

on those; you can specify that a macro takes a variable number of arguments and then

insert all of them into the generated code, and that is all. Luckily, it is all we need.

You specify that your macro takes a variable number of arguments using three

dots, ..., and you get what the caller provided with the variable __VA_ARGS__. In da_

append(), we can write a variadic macro like this:

#define da_append(da, status, ...) \

do { \

 if ((da).used == (da).size) { \

 if (at_max_len((da).size, *(da).data)) \

 { status = false; break; } \

 size_t new_size = \

Chapter 10 Generic Dynamic Arrays

285

 capped_dbl((da).size, *(da).data); \
 da_resize(da, status, new_size); \
 if (!status) break; \
 } \
 (da).data[(da).used++] = __VA_ARGS__; \
 status = true; \
} while (0)

We cannot put the status variable after the three dots, which is why we put it as
the second argument to all the operations. With this definition of da_append(), the
preceding code will run.

This implementation is intended for having dynamic arrays stack allocated—except
for the data—and is intended for working with them locally in one function. Passing
dynamic arrays along in function calls was not the intended use, but, of course, someone
will eventually come along and want to do that. Here, we have to be careful. You always
have to pass them as references. If you pass a dynamic array by value, you get two
different structs, with separate size and used data, but sharing the same data buffer. If a
function resizes an array, for example, by appending to it, the instance of the array at the
caller doesn’t change, but the data field might no longer be valid. It could be freed in the
resizing operation. So, always pass by a pointer.

Is all well if we do that, though? Not completely. If we write a function such as this:

bool add_origin(dynarray(struct point) *da)
{
 bool status;
 da_append(
 *da, status,
 (struct point){ .x = 0, .y = 0 }
);
 return status;
}

and we want to call it elsewhere:

dynarray(struct point) da;
bool success = 0;
da_init(da, success, 0, 0);
if (!success) goto error;

success = add_origin(&da); // <- type error

Chapter 10 Generic Dynamic Arrays

286

we get a type error. The dynarray() macro creates an anonymous struct, and two

anonymous structs, even with exactly the same definition, are not the same type. If you

want to use dynamic arrays as function parameters, then you must typedef them. You

can define the same function as

typedef dynarray(struct point) point_array;

bool add_origin(point_array *da)

{

 bool status;

 da_append(

 *da, status,

 (struct point){ .x = 0, .y = 0 }

);

 return status;

}

and call it as

point_array da;

bool success = 0;

da_init(da, success, 0, 0);

if (!success) goto error;

success = add_origin(&da); // <- correct type

�Heap-Allocated Inlined Array
The variables we defined in the macros in the previous section are necessary (at least

some of them) because we want to preserve the data if realloc() fails, so we need to

store the result of a call in a temporary variable. If we can accept that we lose all our

data if we cannot append to an array, then we can simplify the code and get rid of the

variables. We might be willing to lose everything if we cannot append, for example, if we

are using a dynamic array in an algorithm where we really cannot continue if we cannot

append. In such a situation, we would need to abort anyway.

This is a relatively simple change. We can write a function that replaces realloc()

that will free() its input if it cannot allocate. It could look something like this:

void *free_realloc(void *p, size_t size)

Chapter 10 Generic Dynamic Arrays

287

{
 void *new_p = realloc(p, size);
 if (!new_p) free(p);
 return new_p;
}

Your system might already have such a function. On BSD-based systems such as
macOS, but also on many Linux systems, it is called reallocf().

With that, we can assign to the dynamic array’s data pointer directly. Imagine that
we have a checked_free_realloc() that works like checked_realloc() but with free_
realloc(), then resizing could now look like this:

#define da_resize(da, new_size) \
do { \
 (da).data = \
 checked_free_realloc((da).data, \
 MAX(new_size, MIN_ARRAY_SIZE), \
 *(da).data); \
 (da).size = \
 ((da).data) ? MAX(new_size, MIN_ARRAY_SIZE) \
 : 0; \
 (da).used = \
 ((da).data) ? MIN((da).used, new_size) \
 : 0; \
} while (0)

I got rid of alloc_size and substituted in MAX(new_size, MIN_ARRAY_SIZE) the two
places we use it, and I reset the size and used numbers if the allocation failed. I also got
rid of the status variable because now we can test if da.data is NULL after resizing and
get the status that way.

da_resize(da, 1024);
if (!da.data) { /* handle error */ }

This change is too small to warrant an entire section, so I will add a little more to
show you something new about dynamic memory allocation and structures. We will
allocate the entire array on the heap and put both the size/used information and then
data in the same allocation. It is not a better solution than what we already have, but it
gives me an excuse to teach you about flexible array members of structures and nesting

generic meta-information in a struct.

Chapter 10 Generic Dynamic Arrays

288

The meta-information we need for a dynamic array is size and used, and we can

define a struct for them:

struct da_meta {

 size_t size;

 size_t used;

};

We will put such a struct at the top of type-specific structures like this:

#define dynarr(TYPE) \

struct { \

 struct da_meta meta; \

 TYPE data[]; \

}

We will only use heap-allocated dynamic arrays, so you are supposed to declare

arrays of type T as

dynarr(T) *da = /* initialise */ ;

I will get to the data array there shortly. By putting the meta-information at the top

of the type-specific struct, we know that the memory for the meta-information sits at

the first address of such structures. If we cast a dynarr(T) pointer to a da_meta pointer,

we can treat the memory as if it was the meta-information struct. This means that we

can write generic functions that only know about the meta-information and the size of

objects, and not the various types we need. For example, we can write a function that

reallocates memory for dynamic arrays like this:

void *realloc_dynarray_mem(struct da_meta *p,

 size_t meta_size,

 size_t obj_size,

 size_t new_len)

{

 // Is there a size overflow?

 if (((SIZE_MAX - meta_size) / obj_size < new_len))

 goto fail;

Chapter 10 Generic Dynamic Arrays

289

 struct da_meta *new_da =

 realloc(p, meta_size + obj_size * new_len);

 if (!new_da)

 goto fail;

 new_da->size = new_len;

 new_da->used = MIN(new_da->used, new_len);

 return new_da;

fail:

 free(p);

 return 0;

}

The meta_size is the size we set aside for meta-information (and I will explain it

later), the obj_size is the size of the objects in the array, and, obviously, new_len is

the length we want to resize the array to. This function handles overflow checks and

allocation errors by freeing the existing pointer, p, and if it manages to allocate the new

memory, it sets the new size and used meta-information.

We can use the function for generic versions that create new arrays or grow them to

twice their size:

void *new_dynarray_mem(size_t meta_size,

 size_t obj_size,

 size_t len)

{

 struct da_meta *array =

 realloc_dynarray_mem(0, meta_size, obj_size, len);

 if (array)

 array->used = 0;

 return array;

}

void *grow_dynarray_mem(struct da_meta *p,

 size_t meta_size,

 size_t obj_size)

Chapter 10 Generic Dynamic Arrays

290

{

 // Can we double the length?

 size_t used = meta_size + obj_size * p->size;

 size_t adding = MAX(1, p->size);

 if ((SIZE_MAX - used) / obj_size < adding) {

 free(p);

 return 0;

 }

 return realloc_dynarray_mem(

 p, meta_size, obj_size, p->size + adding

);

}

The new_dynarray_mem() function sets used to zero. It is set to the minimum of len

and its existing value in the call to realloc_dynarray_mem(), but it is not initialized

there, so that value will be rubbish, and we must explicitly set it. The grow_dynarray_

mem() function doesn’t attempt to get SIZE_MAX if it cannot grow the size to twice the

former length. This is only to make the code simpler; you can extend it to work more like

the previous versions if you want.

The functions can work with dynamic arrays without knowing the underlying type

because we have extracted the meta-information as a separate type and because we treat

the pointer to a dynamic array as a pointer to a da_meta structure (and safely so, as long

as the meta struct is always the first member in the dynamic array struct).

For concrete dynamic arrays, those we declare with dynarr(T), we provide macros

that get the size of objects from the variables we use:

#define new_da(da, init_size) \

 new_dynarray_mem(sizeof *(da), \

 sizeof *(da)->data, \

 (init_size))

#define da_free(da) \

 do { free(da); (da) = 0; } while(0)

#define da_at(da,i) (da->data[(i)])

#define da_len(da) (da->meta.used)

Chapter 10 Generic Dynamic Arrays

291

#define da_append(da, ...) \

do { \

 if ((da)->meta.used == (da)->meta.size) { \

 (da) = grow_dynarray_mem(\

 (struct da_meta *)(da), \

 sizeof *(da), sizeof *(da)->data \

); \

 if (!(da)) break; \

 } \

 (da)->data[(da)->meta.used++] = __VA_ARGS__; \

} while (0)

In the calls to new_dynarray_mem() and grow_dynarray_mem(), the meta_size

parameter is the size of the dynamic array type, that is, the dynarr(T) struct. I will beg

a little more of your patience, and I promise I will get to why that is.

You can then use, for example, an integer array, like this:

int main(void)

{

 dynarr(int) *int_array = new_da(int_array, 0);

 if (!int_array) goto error;

 printf("%zu out of %zu\n",

 int_array->meta.used,

 int_array->meta.size);

 for (int i = 0; i < 5; i++) {

 da_append(int_array, i);

 if (!int_array) goto error;

 }

 for (int i = 0; i < da_len(int_array); i++) {

 printf("%d ", da_at(int_array, i));

 }

Chapter 10 Generic Dynamic Arrays

292

 printf("\n");

 da_free(int_array);

 return 0;

error:

 return 1;

}

The new_da() macro gives us a new dynamic array, of the correct type, and all the

other operations will either leave us with a valid dynamic array or set their argument to

NULL. This includes da_free(). It will set the pointer to NULL to indicate that it is no

longer a valid dynamic array. You should test if the array is NULL after every operation

that can fail—here, it is only the initialization and da_append() because we didn’t

include the resize operation and because free() can never fail. If you use the arrays

correctly, that is, you assign a new array to a variable as soon as you declare the pointer,

then the array can never be in an invalid state. It is either an array or a NULL pointer.

The initialization takes the variable we declare as input, which might look a little

odd. The new_da() macro needs to know the type of the array that we want to be

initialized, and it cannot infer where we will assign the result of calling the macro, so we

must provide the type. We have two options here, explicitly provide the type:

#define new_da(type, init_size) \

 new_dynarray_mem(sizeof(dynarr(type)), \

 sizeof(type), \

 (init_size))

or get the type from a variable, as before. There are two issues with using the type. First, it

makes it easier to initialize an array with the wrong type.

dynarr(T) *da = new_da(S, 10);

Of course, you could argue that it is easy to spot, and it is, but we often make

mistakes like

int *p = malloc(sizeof(long));

when we update types in our programs, which is why we use the idiom

int *p = malloc(sizeof *p);

Chapter 10 Generic Dynamic Arrays

293

and it is the same idiom we use when we provide the variable name to the new_da()

macro.

The other issue is more subtle and highly unlikely to be a problem. In the macro that

takes the type, we write sizeof(dynarr(type)) to get the size of the array. If we write

dynarr(T) *da = new_da(T, n);

we would expect that the dynarr(T) on the left and the dynarr(T) in the macro

expansion are the same. And it is, in the sense that it is the same code, and any sane

compiler will construct the types with the same padding and thus the same size.

However, the C standard does not explicitly require it. I cannot imagine a compiler

insane enough to use different paddings for identical struct declarations, but when

it comes to compiler insanity, it is better to be safe than sorry. Using the variable we

declare as the macro input solves both issues, and it isn’t far from the idiom we use with

malloc(), so it is not something that bothers me.

Now finally we come to the meta_size arguments and flexible array members of

structs. Flexible array members are struct members that are empty arrays, that is,

arrays defined without a size as our TYPE data[] member. They were added to C in

the C99 standard, although they have been around as compiler extensions longer (and

as various hacks like length-zero arrays TYPE data[0] longer than that). Flexible array

members have to be the last member of a struct, and the reason will be obvious when I

explain what they are used for.

Our plan is to declare member such that we have the meta-information first,

followed by the objects in the array. A straightforward approach would be to allocate

memory as

dynarr(T) *p = malloc(sizeof(da_meta) + len * sizeof(T));

or something to that effect. It allocates the memory we need for the meta-information

and then memory for len copies of the underlying type. However, straightforward is too

often wrong, and the problem with this approach is alignment. We will allocate enough

memory, but we can’t necessarily put objects of type T right after the meta-information.

If T has alignment constraints that don’t fit the size of da_meta, we get in trouble.

When we declare a struct, C defines the memory layout of the struct with the

necessary padding to align the members correctly. So, if we define

Chapter 10 Generic Dynamic Arrays

294

struct S {

 // stuff

 T array[10];

};

we get a type, struct S, where the member array sits at an offset where we can place

ten objects of type T. If we instead of array[10] write array[], we get an offset for array

where we can put zero T, but correctly aligned. If we dynamically allocate memory, and

array is the last member, it doesn’t matter that we didn’t declare the struct so it has

space for the T objects. We still get an offset where we can place them. And if we allocate

sufficient memory, then we can put objects there. Thus, with

struct S {

 // stuff

 T array[];

};

we can allocate memory as

struct S *p = malloc(sizeof *p + n * sizeof *(p->array));

and get space for the “stuff” first in the structure and then additionally room for n objects

of type T. If we access them through the array member, they have the right alignment.

That is what the empty array gives us.

Consider a struct like this:

struct S {

 char c[2];

 int array[];

};

If we left out the array, the size would be two. That is because char always has size

two and can align at any offset. If we allocated space for the char array and then tried to

put integers after it, however, we would get an error if integers cannot sit at alignment

two (which they cannot on my machine; they want alignment four). Including the

empty array makes the size of struct S four (again, on my machine) because the array

member must sit at an offset where I can place an integer. If I allocate

struct S *p = malloc(sizeof(struct S) + 10 * sizeof(int));

Chapter 10 Generic Dynamic Arrays

295

I will get the member for the struct plus 10 int, and I can put the integers starting

at the offset where array is found. You can get the offset of a struct member using the

macro offsetof() from the <stddef.h> header, so you can examine what C says on your

own machine with

printf("%zu %zu\n", sizeof(struct S),

 offsetof(struct S, array));

If the array was of a different type, for example, char, the alignment might change.

With

struct T {

 char c[2];

 char array[];

};

and

printf("%zu %zu\n", sizeof(struct U),

 offsetof(struct U, array));

it tells me that the size of the struct is two, and so is the offset of array. The size is two

because we need to store the char array of length 2, and right after that we have an offset

where we can place array, but we do not need to allocate any memory for it—the array is

empty, and it doesn’t count. The padding is needed to give us a valid offset, but we don’t

add memory just to store the flexible array member. When array is a char array, it can

go after the other member without padding, so the size of the struct is the same as the

array c.

This doesn’t mean that the flexible array member goes at the last address of the

struct, however. Its offset is not always equal to the size of the struct. Consider

struct U {

 void *p; int i;

 char array[];

};

On my machine, pointers have to align on offsets multiples of eight, integers

multiples of four, and chars of course anywhere. The size of p and i take up 8 bytes for the

pointer and 4 for the integer, so 12 bytes. Since array is of char, it can align right after i,

and its offset when I check it with

Chapter 10 Generic Dynamic Arrays

296

printf("%zu %zu\n", sizeof(struct U),
 offsetof(struct U, array));

tells me as much. Still, sizeof(struct U) is 16. What gives? Well, the size of a struct

has to be such that we can align one copy after another, if the first is correctly aligned. If p

sits at a valid alignment, a multiple of eight, and I put two struct U in a row, the second

element’s p must also sit at a multiple of eight. If the size of struct U was 12, it wouldn’t.

There is extra padding, after the offset we get for array, to make it possible to align

struct U in an array.
Structs with flexible array members are not supposed to go into arrays—we use the

array for dynamic memory allocation—but the rule for sizes of structs still applies. If we
allocate space for a struct U, with an extra 10 bytes for the array, we can write

struct U *u = malloc(sizeof *u + 10 * sizeof *u->data);

and we can access u->data as an array with ten chars in it. This is what we do with
the preceding dynamic arrays. We allocate space for a struct with a flexible array of
the correct type. It guarantees us that we get space for the meta-information and the
padding to get the correct alignment for the data member. But if the size of the struct is
larger than the offset of the data member, we are wasting some space. We are wasting
sizeof(dynarr(T)) - offsetof(dynarr(T), data).

On my machine, this is nothing. My size_t has size 8 and alignment 8; I can put
any other type after the meta-information without padding, and there isn’t additional
padding to align a potential following struct da_meta. I still use the flexible array,
though, to make sure that a future setting won’t have alignment issues. If I also want
to ensure that I am not wasting memory, however little, I can allocate memory for
the struct up to the data member offset, and then the elements in the array, but not
the potential padding following the data offset. Instead of using sizeof *(da) in the
macros—which gives me the size of the struct—I could use the offset of the data array.

If we know the type of the dynamic array, then we can get the offset using the
offsetof() macro:

offsetof(dynarr(T), data)

but our macros use a pointer to an array to get information about the type. Since
offsetof() needs a type, we need to get the type of the macro argument. A compiler
extension in most compilers is __typeof__ (or __typeof or typeof(); it is not a standard
operator so it has different names). It gives you the type of an object, and then we can
use it with offsetof(). With GCC or Clang, this macro will give us the data offset of a

dynamic array:

Chapter 10 Generic Dynamic Arrays

297

#define da_data_offset(da) \

 offsetof(__typeof__(*(da)), data)

You can replace sizeof *(da) with da_data_offset(da) in the new_da() and da_

append() macros to use the offset rather than size.

The problem, of course, is that we are relying on a compiler extension. In many

cases, since it is a common extension, it isn’t a problem. We can pick the compiler-

specific notation via preprocessing flags.

However, it is always better to restrict ourselves to the C standard if we can.

How do we compute the offset of a member? A common definition of the macro is a

variation of this:

#define offsetof(type,member) \

 (size_t)&((type *)0)->member

It makes a NULL pointer of the given type and then gets the address of its member.

If the pointer is to address zero (which a NULL pointer is on systems that can define

offsetof() this way), then the member address is the offset from the top of the struct.

We can get the same information using a pointer to a struct and a pointer to its

member:

#define offset_pointer(p,member) \

 (size_t)((char *)&(p)->member - (char *)(p))

It looks like we dereference the pointer here, when we get (p)->member, but we

take the address of the member and not what it looks at, so the macro works even if p is

NULL. As long as it is a valid pointer, we get the offset this way. Thus, we can use that:

#define da_data_offset(da) \

 ((char *)&(da)->data - (char *)(da))

Unfortunately, we do need it to be a valid pointer, and an uninitialized pointer

isn’t necessarily that. And in new_da(), we have an uninitialized pointer. Even if an

uninitialized pointer would work, if you turn on compiler warnings, you would see it

complain if we calculated the offset of it with this macro. We are using the value of an

uninitialized variable, even though we don’t care about the actual value.

Chapter 10 Generic Dynamic Arrays

298

You can fix it by setting the pointer to NULL before you create a new dynamic array

in new_da():

#define new_da(da, init_size) \

 ((da) = 0, new_dynarray_mem(\

 da_data_offset(da), \

 sizeof *(da)->data, \

 (init_size)))

We can get away with this because assigning to da and the allocation are both

expressions that we can use with the comma operator. We do not need compiler

extensions like statement expressions.

It doesn’t change the use pattern much, because you are supposed to assign the

value of the allocation back into that pointer when you call new_da(). So, it shouldn’t

hold anything of value in the first place. If you write code such as

dynarr(int) *d1 = new_da(d1, 10);

dynarr(int) *d2 = new_da(d1, 10);

where you reuse a variable (and lose access to the member it points to), then you are

going to get into trouble at a later time anyway (because the type of the two arrays could

diverge). Still, if you don’t like it, I understand you. Then stick to the typeof () solution,

if your compilers support it, or use the size of the struct (you are not wasting many

bytes compared to the memory you use for storing objects in any case).

If you want to call functions with dynamic arrays as parameters, you have the same

issue with types as in the previous section. If you write a function such as this, for

inserting points in an array from their x and y coordinates:

struct point { double x, y; };

void add_points(size_t n,

 double xs[n], double ys[n],

 dynarr(struct point) *da)

{

 for (int i = 0; i < n; i++) {

 da_append(da, (struct point){ .x = xs[i], .y = ys[i] });

 }

}

Chapter 10 Generic Dynamic Arrays

299

you cannot use it as

dynarr(struct point) *points = new_da(points, 0);

size_t n = 5;

double xs[5] = { 0.0, 1.0, 2.0, 3.0, 4.0 };

double ys[5] = { 4.0, 3.0, 2.0, 1.0, 0.0 };

add_points(n, xs, ys, points);

because the types do not match (even though they are created from the same expanded

macro). You must typedef the array type.

struct point { double x, y; };

typedef dynarr(struct point) point_array;

void add_points(size_t n,

 double xs[n], double ys[n],

 point_array *da)

{

 for (int i = 0; i < n; i++) {

 da_append(da, (struct point){ .x = xs[i], .y = ys[i] });

 }

}

int main(void)

{

 point_array *points = new_da(points, 0);

 size_t n = 5;

 double xs[5] = { 0.0, 1.0, 2.0, 3.0, 4.0 };

 double ys[5] = { 4.0, 3.0, 2.0, 1.0, 0.0 };

 add_points(n, xs, ys, points);

 return 0;

}

You also have to call the function with a reference to the dynamic array. That is,

you have to use a pointer to the array. It looks like we are doing that already, perhaps,

because we use a pointer to point_array, but a dynamic array in this implementation is

already a pointer. We need a pointer to the array, so a pointer to a pointer. If you run the

preceding code and then attempt to access the points array:

Chapter 10 Generic Dynamic Arrays

300

int main(void)

{

 point_array *points = new_da(points, 0);

 size_t n = 5;

 double xs[5] = { 0.0, 1.0, 2.0, 3.0, 4.0 };

 double ys[5] = { 4.0, 3.0, 2.0, 1.0, 0.0 };

 add_points(n, xs, ys, points);

 for (int i = 0; i < da_len(points); i++) {

 printf("<%.1f,%.1f> ",

 da_at(points, i).x,

 da_at(points, i).y);

 }

 printf("\n");

 da_free(points);

 return 0;

}

you will likely get an error. In add_points(), we append to an array that is initialized to

have length zero, so we will realloc() it multiple times. We are growing it, so most likely

this involves freeing the original data and getting a new address from realloc(). So after

the call to add_points(), the points array contains the address of freed memory. We

cannot safely use it.

Inside add_points(), the pointer is updated when we grow the array (and we should

have checked for allocation errors in the function!). But the updated pointer was never

propagated back to the calling code. Changing a function argument does not change the

calling variable.

One option, of course, is to return the dynamic array from functions that modify

them, and always remember to assign them back to the correct pointer:

struct point { double x, y; };

typedef dynarr(struct point) point_array;

point_array *add_points(size_t n,

 double xs[n], double ys[n],

 point_array *da)

Chapter 10 Generic Dynamic Arrays

301

{

 for (int i = 0; i < n; i++) {

 da_append(da, (struct point){ .x = xs[i], .y = ys[i] });

 if (!da) break;

 }

 // Return the dynamic array again

 return da;

}

int main(void)

{

 point_array *points = new_da(points, 0);

 size_t n = 5;

 double xs[5] = { 0.0, 1.0, 2.0, 3.0, 4.0 };

 double ys[5] = { 4.0, 3.0, 2.0, 1.0, 0.0 };

 // Remember to assign back to the array!

 points = add_points(n, xs, ys, points);

 if (!points) goto error;

 for (int i = 0; i < da_len(points); i++) {

 printf("<%.1f,%.1f> ",

 da_at(points, i).x,

 da_at(points, i).y);

 }

 printf("\n");

 da_free(points);

 return 0;

error:

 return 1;

}

Chapter 10 Generic Dynamic Arrays

302

This, however, only works if functions never take more than one array as input or at

least never modify more than one. It is not particularly safe, since it is easy to forget to

assign the function return value back to the array. A better solution is to pass pointers to

pointers as arguments. If you have a pointer to the dynamic array pointer, then you can

use it, dereferenced, as the dynamic array. If the macros update it, they update it in the

calling function as well.

// Use a pointer to the dynamic array pointer

void add_points(size_t n,

 double xs[n], double ys[n],

 point_array **da)

{

 for (int i = 0; i < n; i++) {

 da_append(*da, (struct point){ .x = xs[i], .y = ys[i] });

 if (!*da) break;

 }

}

int main(void)

{

 point_array *points = new_da(points, 0);

 size_t n = 5;

 double xs[5] = { 0.0, 1.0, 2.0, 3.0, 4.0 };

 double ys[5] = { 4.0, 3.0, 2.0, 1.0, 0.0 };

 // call by reference

 add_points(n, xs, ys, &points);

 if (!points) goto error;

 for (int i = 0; i < da_len(points); i++) {

 printf("<%.1f,%.1f> ",

 da_at(points, i).x,

 da_at(points, i).y);

 }

 printf("\n");

 da_free(points);

Chapter 10 Generic Dynamic Arrays

303

 return 0;

error:

 return 1;

}

It turned out to be a long intermezzo chapter, but we learned a few things along

the way. Most of it related to generic code, with void pointers, raw memory, or a lot of

macros, but we also learned about flexible array members and how to use those. So all

was not lost. In the next chapter, we return to the schedule program, where we will look

at a different type of data structures.

Chapter 10 Generic Dynamic Arrays

305
© Thomas Mailund 2021
T. Mailund, Pointers in C Programming, https://doi.org/10.1007/978-1-4842-6927-5_11

CHAPTER 11

Linked Lists
We now change our focus to a different kind of data structures, so-called recursive data

structures. Those are data structures defined in terms of themselves, and in C, the only

way that you can implement them is through pointers. If you pick up a random algorithm

book, more than half of the data structures described there will likely be recursive, so we

obviously can only scratch the surface of this topic, but in this chapter and the following

two, we will see some examples.

A recursive data structure is one that contains members of its own type. In this

chapter, we look at linked lists, where a list is defined as follows:

	 1.	 A list is empty.

	 2.	 Or a list contains an element and a list (the “tail” of the list).

We will modify it slightly in Chapter 4, so a list has a reference to two other lists. In

Chapter 12, we have a search tree where

	 1.	 A tree is empty.

	 2.	 Or it contains a value and two subtrees.

In both cases, item 2 is the recursive part.

We could try to implement the list definition like this (notice that this is not valid C

and will not compile):

struct list; // forward decl.

struct empty_list {};

struct nonempty_list {

 int value;

 struct list tail;

};

struct list {

 enum { EMPTY, NON_EMPTY } tag;

https://doi.org/10.1007/978-1-4842-6927-5_11#DOI

306

 union {

 struct empty_list empty;

 struct nonempty_list non_empty;

 } list;

};

It is a direct translation of the definition. The “or” in the definition is naturally

defined as a union, and we have two cases: empty and non-empty. Here, the element

that the non-empty list contains is an integer. We need a tag, the enum to tell them apart,

and we put that into a list struct. It is not directly recursive, because a struct list

doesn’t contain a struct list, but it is indirectly recursive as a struct list contains a

struct nonempty_list, which in turn contains a struct list.

The definition is overly complicated because we do not need an empty struct for an

empty list, so we could also define the list like this, where it is obviously recursive:

struct list {

 bool is_empty;

 int value;

 struct list tail;

};

There is a flag to indicate whether the list is empty and the values we need if it isn’t.

The definition won’t work, and it can’t work, because to allocate memory for a

struct list, we must allocate memory for the embedded struct list, so we would

need infinite memory. The recursion has a base case, the empty list, that for any given

instance means that we use finite memory, but we have to allocate infinite memory if we

define the list this way.

Pointers ride to the rescue. Instead of embedding the tail of the list into the struct, we

can use a pointer to a list. The pointer takes up finite memory, regardless of how large

the tail is.

Pointers are both necessary and sufficient to implement recursive data structures in

C. With recursive data structures such as a list, we (usually) never have to worry about

allocation overflow and such, so they are simpler to implement in that regard. Working

with recursive data structures is mostly a question of moving pointers around to achieve

what we want. That, of course, opens up new issues instead. We need to be careful with

setting pointers correctly. Making sure that memory is correctly freed is often also more

problematic if objects are connected in complicated ways. So it is a new set of challenges

Chapter 11 Linked Lists

307

we will now encounter. The data structures we see, linked lists and search trees, are

among the simplest, but they illustrate well the kind of programming you need to work

with recursive data structures.

�Singly Linked Lists
The definition “a list is empty or has an element and a tail” is a so-called singly linked list,

since the non-empty, recursive, part refers to a single tail. We can implement them like

this:

struct link {

 int value;

 struct link *next;

};

I have named the structure link rather than list. A list will be a pointer to a

sequence, or chain, of such links. The pointer is NULL if the list is empty; otherwise, it

will point to a link where we can find the first value in the list and a pointer to the next

link in the chain. So, the list definition, updated to the pointer/link representation, is

	 1.	 An empty list represented as NULL.

	 2.	 Or a pointer to a struct link that has a value and a pointer, next,

to a list.

We can allocate a link using

struct link *new_link(int val, struct link *next)

{

 struct link *link = malloc(sizeof *link);

 if (!link) return 0;

 link->value = val;

 link->next = next;

 return link;

}

Chapter 11 Linked Lists

308

We get the size of the memory to allocate from sizeof *link (when link points to a

struct link, it is the size of the struct). The sizeof operator cannot give us overflow—if

you can represent a struct at all, then you can malloc() size for it. So, there is no need

to worry about overflow, but of course we can still get an allocation error, so malloc()

can return NULL, in which case we have to give up. We return a NULL pointer in return,

so the user can handle the error. Otherwise, we set the value and next members.

Ignoring allocation errors, we can construct a list of the numbers 1, 2, and 3 with

struct link *list =

 new_link(1, new_link(2, new_link(3, 0)));

Since C evaluates the function arguments before it calls a function, we will first

evaluate new_link(3, 0) which creates a link with value 3 and a NULL pointer for

next; see the top-right corner of Figure 11-1. Here, I have drawn the NULL pointer as a

pointer that ends in a short line. I will generally draw NULL pointers that way or, when

figures would otherwise get too messy, leave them out entirely. When illustrating data

structures, I will draw the individual structs as boxes and the pointers as arrows.

When we call new_link(2, -), with "-" as the result of new_link(3, 0), we create a

new link, the middle of Figure 11-1, where the value is 2, and the next pointer refers to the

link from the first call. Then, when we call new_link(1, -), bottom left of Figure 11-1,

we create a link with value 1 where next points to the link from new_link(2, -). You

can think of new_link() as prepending a value to a list, but we can also make an explicit

operation for that:

struct link *prepend(struct link *list, int val)

{

 // new_link() returns 0 for allocation error,

 // and we just propagate that.

 return new_link(val, list);

}

With

struct link *list =

 new_link(1, new_link(2, new_link(3, 0)));

Chapter 11 Linked Lists

309

we have a problem if any of the allocations fail. If the first allocation, new_link(3, 0),

fails, we end up with a list of 1 and 2 instead of 1, 2, and 3. Not what we want, but not as

bad as it could be. If one of the other new_link() calls fails, however, it is slightly worse.

The failed call will look like an empty list, since the function returns NULL, but the input

to the function call is an allocated link. If the function call fails, we lose access to that

memory. Our program no longer has a pointer to it, and we have no way of getting one

either, and so we cannot free() it. We should probably be more careful.

We can write a function that frees an entire list. That means it must free all the links

in the list’s chain, not just the first link (which we can easily free with free()). It could

look like this:

void free_list(struct link *list)

{

 while (list) {

 // Remember next, we cannot get it

 // after free(list)

 struct link *next = list->next;

 free(list);

 list = next;

 }

}

Figure 11-1.  new_link(1, new_link(2, new_link(3, 0)));

Chapter 11 Linked Lists

310

In the while-loop, list is a pointer that is either NULL (in which case we are done

and leave the loop) or it points to a valid link. We need to free the link, but we also need

to continue with its next pointer. If we free the link first, then we no longer have a valid

pointer to the link, and thus we cannot safely get next, so we extract next first, then we

free, and then we continue the loop.

Using a while (list) { ... } construction is typical for running through a list

when implemented this way. We exploit that the NULL pointer evaluates to false, and

we just need to remember to update list to list->next at the end of the loop body. For

example, if you want to print the elements in an integer list, you can write

void print_list(struct link *list)

{

 printf("[");

 while (list) {

 printf("%d ", list->value);

 list = list->next;

 }

 printf("]\n");

}

If you want to determine if a given integer is in a list, you can write

bool contains(struct link *list, int val)

{

 while (list) {

 if (list->value == val)

 return true;

 list = list->next;

 }

 return false;

}

It is the same pattern, and almost all loops through a list will follow this pattern.

Now that we can free a list, we can handle allocation errors when we attempt to

construct one as well. If the construction fails, we can (for example) delete what we have

so far and get an empty list instead of an incomplete one, without leaking memory. The

following function constructs a list from an array, but if it gets an allocation error, it will

clean up and return NULL:

Chapter 11 Linked Lists

311

struct link *make_list(int n, int array[n])
{

 struct link *list = 0;
 for (int i = n - 1; i >= 0; i--) {
 struct link *link = new_link(array[i], list);
 if (!link) { // Allocation error -- clean up
 free_list(list);

 return 0;
 }

 list = link;

 }

 return list;
}

It constructs the list from the array backward. Remember that new_link() prepends

the new element to the list, so if we ran through the array from left to right, we would

get a list with the elements in reverse. The variable list holds the head of the current

list, and we update it to link at the end of the for-loop’s body, where we know that the

allocation was successful.

Prepending to a list is a fast operation. We allocate a new struct link, and we set a

value and a pointer, and that is all. But what about appending? That is both slower and

turns out to be more complicated code:

struct link *append(struct link *list, int val)
{

 if (!list) return new_link(val, 0);

 struct link *last = list;
 while (last->next) {
 last = last->next;

 }

 last->next = new_link(val, 0);

 // If we didn't set the last link, then we had

 // an allocation error and should return 0.

 // Otherwise we return the new list

 if (!last->next) return 0;
 else return list;

}

Chapter 11 Linked Lists

312

There is no avoiding having to find the last link in the chain if we want to append.

With a singly linked list, we only have direct access to the first link in the chain (but we

will fix that later in this chapter with doubly linked lists). So, we need to search through

as many links as there are. We cannot use the while (list) pattern now, however,

because then when we find the end of the list, list will be NULL, and we are one past

the link we want. We must find the last link, which is the link where next is NULL. So,

we must use while (list->next) to get that. In the code, I have named the variable

last to indicate that it is the last link we are searching for. However, this won’t work if

we start out with a NULL pointer. Then we would dereference a NULL pointer when we

write last->next, and that is undefined behavior (and almost guaranteed to crash our

program). We have to handle an empty list as a special case.

If we append to an empty list, we want a list with a single element, so if the input to

append() is NULL, we return a new link (with 0 as its next pointer). Otherwise, we can

search for the last link, and once we have it, we can allocate a new link and make the

next pointer in the last link point to it; see Figure 11-2. In the figure, the original link is

the one from Figure 11-1, with three links, 1, 2, and 3, and we append 4 to the list.

That means that we create a new link for 4, with NULL for its next pointer, and then

we change the old next pointer for link 3 (shown as a dashed pointer), so it is no longer

NULL but points to the new link.

The allocation, however, can fail. We can still assign the result of the allocation to

the last link’s next pointer—if the allocation fails, it then remains NULL—but we need

to report the error. So if the allocation fails, we will return a NULL pointer. Otherwise, we

return the original list. By returning the original list, we get the rule that append() either

Figure 11-2.  Appending to a singly linked list

Chapter 11 Linked Lists

313

returns NULL, in case of an allocation failure, or returns the result of appending a value

to a list—the list we get by appending the value to the input list. If the input is empty or

contains values, we get the same result—the updated list.

It is not a pretty interface, I admit. There are several cases of what can happen. Errors

give us NULL, which is fine. But with successful allocations, we modify the input if it

isn’t NULL, and we return a completely new list if it is NULL. If we always wanted a new

list, we could create one by copying the elements in the input. I won’t list the code here,

but implementing it is a good exercise if you want to test yourself. That leads to a new

headache if you don’t want to keep different copies of lists around because then you

would have to remember to free the input when you do not want it any more. On the

other hand, if you sometimes get a copy back, and sometimes not, what happens with

code such as this:

struct link *list1 = make_list(n, array);

struct link *list2 = append(list1, val);

The make_list() function can return a NULL pointer, so list1 might be NULL. If it

is, then list2 is a completely new list. If it isn’t, and append() didn’t fail, then list1 and

list2 are pointers to the same list. So, should you free() both lists or just one of them?

If they are the same, you can only free one. If they are different, you must free both. You

can test if they are the same, of course. This isn’t the most difficult issue that will come

up with memory management in this section—it gets worse, but we will alleviate it with

a small change to the code in the next section. Still, it illustrates that we have to worry

about assigning the result of an append to a new list.

The problem with freeing memory isn’t confined to append(). We have a similar

problem with prepend(). Consider this code:

struct link *list1 = make_list(n, array);

struct link *list2 = prepend(list, -1);

// some code

free_list(list1);

free_list(list2);

If list1 is NULL, everything is fine. We prepend a link to it to get list2, and we can

free both the NULL pointer in list1 and the link in list2. But if list1 has a chain of

links, then list2 (if the prepend() succeeded) consists of one link and then a list that

is shared with list1. When we free list1, we free all the links after the first in list2, so

Chapter 11 Linked Lists

314

when we call free_list(list2), we can safely free the first link, but all the remaining

are already gone. If we try to free() them, we get undefined behavior (and it won’t lead

anywhere pleasant). Here, the problem isn’t that prepend() can sometimes give us a

new list and sometimes an old list, but that it will provide us with a list where all but one

link is shared with the old list. (Again, we will improve upon it in the next section.) I just

want to show you the problems in a straightforward solution first, so you recognize that

they exist, and will be careful in the future, and not conclude from a better solution that

things are simple and that there is nothing to worry about. There most certainly is.

A more natural way to use prepend() (the wrapper we wrote around new_link())

and append() is like this:

list = append(list, 6);

list = prepend(list, 0);

We always update a list when we modify it, so we always assign the result back to

the list. Unfortunately, this doesn’t work. The functions will give us NULL pointers if the

allocation fails, and if we assign the result to the list, then we lose access to the allocated

memory we already have. We leak. We always need to test the return values before we

can update the existing pointer.

struct link *new_list = append(list, 6);

if (!list) {

 perror("List error: ");

 exit(1); // Just bail here

}

list = new_list;

new_list = prepend(list, 0);

if (!list) {

 perror("List error: ");

 exit(1); // Just bail here

}

list = new_list;

If you don’t mind losing the values you have already put into a list, for example, if

you cannot handle allocation errors anyway and need to bail if you see them, you can

simplify the user’s code by deleting the input of the operations:

struct link *prepend(struct link *list, int val)

Chapter 11 Linked Lists

315

{

 struct link *new_list = new_link(val, list);

 if (!new_list) free_list(list);

 return new_list;

}

struct link *append(struct link *list, int val)

{

 struct link *val_link = new_link(val, 0);

 if (!val_link) {

 free_list(list);

 return 0;

 }

 if (!list) return val_link;

 struct link *last = list;

 while (last->next) {

 last = last->next;

 }

 last->next = val_link;

 return list;

}

In both functions, we allocate the new link early, and if it fails, we free the input and

return NULL. Otherwise, we handle the operation without errors. With those operations,

you can always assign a list operation back to the list itself and check if it is NULL to see if

there were errors.

list = append(list, 6);

if (!list) goto error;

list = prepend(list, 0);

if (!list) goto error;

But let us leave allocation behind and look at a few operations where we do not add

new elements to a list and thus can have no allocation failures. A simple operation is a

Chapter 11 Linked Lists

316

concatenation. Given two lists, construct a new list that contains all the links from the

two lists:

struct link *concatenate(struct link *x,

 struct link *y)

{

 if (!x) return y;

 struct link *last = x;

 while (last->next) {

 last = last->next;

 }

 last->next = y;

 return x;

}

We will need to find the last link in the first list to add the second list to it, so we have

a special case if x is empty. If it is, we return y. The concatenation of an empty list with

another is the links in the second list, so that will work. Otherwise, we find the last link,

and by setting its next pointer to point to the first link in y, we have concatenated them.

Since we do not allocate new links, the function cannot fail. You still need to be

careful with memory management, though. If you write

struct link *list3 = concatenate(list1, list2);

you now have three pointers to links, list1, list2, and list3. The list2 list is

unchanged. It doesn’t matter if it was empty or not; we have not changed any of its links;

we have just made the last link in list1 point to it. That is, we have made the last link

in list1 point to it, if list1 wasn’t empty. If list1 was empty, then list3 is an alias for

list2. If list1 was not empty, then list3 is an alias for (the modified) list1. This, of

course, is an issue when we need to free the lists. If we free list2, then we have freed the

tailing links in list2 (and list1 if it wasn’t empty). If we free list1, and it was empty to

begin with, then we haven’t freed anything (because free(0) doesn’t do anything). But

if list1 wasn’t empty, we have freed all three lists. We have freed list3 because it is an

alias for the modified list1, and we have freed list2 because free_list() will free all

the links in the list, and that includes those we got from list2. The only safe option is to

free list3 and never list1 and list2 after appending them.

Chapter 11 Linked Lists

317

After appending two lists, you are best off by considering the input gone, and never

look at it again. The first argument, unless empty, is modified, and the second argument

is something you cannot safely free. If you do not want a concatenation operation that, in

this way, destroys the input, you should program a version that makes a copy of the two

lists instead. To test your understanding of linked lists, this is another good exercise that I

recommend that you do.

If you have a concatenate() operation, then you can implement append() in terms

of it:

struct link *append(struct link *list, int val)

{

 return concatenate(list, new_link(val, 0));

}

It is a simple approach to implement the operation, but it is not a particularly good

idea. The new_link() allocation can fail, and concatenate() won’t notice. So, we simply

add allocation errors to the concatenate() function that is problematic enough as it is. It

is not a bad idea to implement one operation using another in general, of course, but this

particular choice is a poor one.

For a slightly more complex example, here is a function that reverses a list:

struct link *reverse(struct link *list)

{

 if (!list) return 0;

 struct link *next = list->next;

 struct link *reversed = list;

 reversed->next = 0;

 while (next) {

 struct link *next_next = next->next;

 next->next = reversed;

 reversed = next;

 next = next_next;

 }

 return reversed;

}

Chapter 11 Linked Lists

318

Figure 11-3 shows the steps in the function, when run on a list with the values 1, 2,

3, and 4, in that order. The original list, with its four links, is shown in A). In B), we have

the pointers we set up before the while-loop. We have a special case if the input list is

empty, since we will need to be able to refer to the next link in the list, and there isn’t

one if it is empty, so we handle that before we get to this point. If the list isn’t empty, we

get a pointer, next, to the second link in the list, we make reversed point to the first link,

and we set the first link’s next to NULL. The reversed pointer will hold the reversed list,

and the reversed list must end with the first link in the input, which is what it does at this

point. An invariant in the loop will be that reversed holds the reversed links of those

we have processed so far. The first link’s next pointer is set to NULL because reversed

should end after that link. The old pointer values are shown as dashed lines and the new

and unchanged pointers as solid lines.

Now we start the while-loop in C), and in it we get hold of the next link’s next value.

We need it to continue the loop later, where we have changed the link that next points

to. We only need it for that, so we do not do anything with next_next yet. Now, we get

hold of the link that next points at, however, and prepend it to reversed. Prepending it

to reversed makes it the first element in the list of reversed links so far, which upholds

the invariant. The way we prepend is through updating pointers. The next link’s next

pointer should point to reversed (changing it here is the reason we needed next_next),

and reversed should point to next so that the link is now the front of the reversed list.

Figure 11-3.  Reversing a singly linked list

Chapter 11 Linked Lists

319

When we move to D), we first update next, so it points to the new next link. We do it

at the end of the loop body, but in the figure I have listed it as the first statement in the

code since it is a change we make between C) and D). We now do the same operation

as we did to get to C). We prepend the current next link to reversed, remembering

the next->next link in next_next. After that, reversed holds the values 3, 2, and 1 (if

you follow the solid lines from what reversed points to, that should be clear). In E), we

handle the last link. Here, next_next becomes NULL, so we terminate the while-loop

when we are done, and reversed holds the reversed list.

Manipulating pointers like this is an integral part of working with recursive data

structures. The example is the most complex we will see in this chapter, but it is not

unusually so. If you need to manipulate a data structure in a nontrivial way, it helps to

draw how you want to rearrange the pointers, like in the figure. It can get complicated,

but drawings help immensely.

The last operation we will consider is deleting all links with a given value. The

implementation can look like this:

struct link *delete_value(struct link *list,
 int val)

{

 if (!list) return 0;
 if (list->value == val) {
 struct link *next = list->next;
 free(list);

 return delete_value(next, val);
 } else {
 list->next = delete_value(list->next, val);

 return list;
 }

}

It is a recursive solution that says that deleting all occurrences of val in an empty

list is the empty list (what else would it be?). If the first link’s value is val, then the result

is what we get from deleting val from the rest of the list, and finally if the first value is

not val, then the result is the current value followed by the result of deleting val from

the rest of the list. Here, “followed by” is handled by assigning the result of the recursive

call to the current link’s next pointer. In the case where we delete a link, we get its next

pointer before we free(), since otherwise we would need to dereference to a deleted

link, which is undefined behavior.

Chapter 11 Linked Lists

320

The function cannot fail; we do not attempt to allocate any new memory, but of

course that doesn’t mean that we are entirely safe from memory management issues. If

you write

delete_value(list, 42);

then is list now a valid pointer? That depends. If the first link in list had the value

42, we have deleted that link, but list still points to it. It points to a deallocated chunk of

memory, so it is not valid. If list was empty, or didn’t have 42 in its first link, then list

now holds the updated list where all occurrences of 42 are deleted.

With this function, however, the solution is easy. It is always safe to write this:

list = delete_value(list, 42);

because you get the updated list back. It might be the same address as the input,

when we do not delete the first link, but if we do get a different address back, it is the list

without 42, which is what we want.

To sum up, in this section, we have seen how we can implement a recursive data

structure, a singly linked list, using a struct with a member that is a pointer to the same

struct’s type. We have also seen how we can implement various operations on the type.

Although the data structure is simple, we have learned that there are many potential

pitfalls with memory management. We have to deal with allocation errors, but that is the

least of our worries. The real problem is freeing memory correctly once allocated.

Correctly freeing memory is practically always a concern with recursive data

structures. The problem is that they tend to create aliases for the same memory. Here,

when we concatenate, for example, we end up with one reference to the tail part of

another list. If we delete the list through the tail reference, then the chain of links from

the front will eventually run into freed memory, and we cannot handle that. If we free

from the front, then the original reference to the second list will point to freed memory.

While such aliasing is sometimes unavoidable, we can often alleviate it with a better

interface to the operations, and we will do that in the next section. The interface we have

implemented here is horrible when it comes to safe memory management, I admit. But

I wanted to show you a lousy solution before I showed you a good one, so you would be

aware of the problems and appreciate the solution.

The solution in the next chapter involves a (very) slight change to how we represent

lists, and naturally given the topic of the book, it involves a pointer. Then practically

all our problems go away. In Chapter 15, we will see another approach to dealing with

aliasing between recursive data structures.

Chapter 11 Linked Lists

321

�Adding a Level of Indirection
The leading cause of our troubles with memory management was that our operations

returned new lists that potentially referred to links the input also referred to. We can

change the implementation such that we modify the input instead of returning new lists.

We won’t have to create new copies for each list that we return, but we will implement

the operations such that we do not create more than one list with a pointer to the same

link. When we prepend or append, we update the existing list; when we concatenate,

we move the links from one list to another, so the second list no longer holds them. This

isn’t possible with the representation we used so far for lists—a pointer to a link—for two

reasons. We cannot modify the calling variables, so they no longer point to a function’s

input, and we cannot modify an empty list, represented as a NULL pointer. The solution

to both is one level of indirection: a list will no longer be a pointer to a link, but a pointer

to a pointer to a link.

Adding a level of indirection in this way comes in handy in many applications. It is

a case of calling functions by reference all over again. If we have to modify the variables

the caller has, we need to get pointers to them, so we have to work with pointers to

pointers to links. If we do that, then empty lists are no longer NULL pointers—that we

cannot modify—but rather they point to a NULL pointer. We can modify such a list

by changing the value it points to. We can use the same definition of links and the

allocation function for them with the new lists:

struct link {

 int value;

 struct link *next;

};

struct link *new_link(int val, struct link *next)

{

 struct link *link = malloc(sizeof *link);

 if (!link) return 0;

 link->value = val;

 link->next = next;

 return link;

}

Chapter 11 Linked Lists

322

I will rename the deallocation function to have one function for freeing link memory
and another for lists. The function for freeing a chain of links is the same as before, but
we call it free_links():

void free_links(struct link *list)
{
 while (list) {
 struct link *next = list->next;
 free(list);
 list = next;
 }
}

Now we define a list to be a pointer to pointer to struct link and provide a macro
to test if it represents an empty list—in which case it points to a pointer to NULL. For
convenience, and to make the code more readable, we also provide a macro to get the
links in a list:

typedef struct link ** list;
#define is_list_empty(x) (*(x) == 0)
#define list_links(x) *(x)

We can still heap-allocate lists. They have a different type, but we can heap-allocate
any type we can get the size of (which we can, of course, with sizeof). If the allocation is
successful, a good initial value for a list is the empty list, so the pointer it points to should
be NULL:

list new_list(void)
{
 list x = malloc(sizeof *x);
 if (x) *x = 0;
 return x;
}

When we free a list, we should free the links it points to and then the list itself:

void free_list(list x)
{
 free_links(list_links(x));
 free(x);

}

Chapter 11 Linked Lists

323

In many cases, the new representation doesn’t change anything. If we have a

function that merely iterates through links, like print_list() or contains(), the only

change is that we should get the links from the list using list_links():

void print_list(list x)

{

 printf("[");

 struct link *link = list_links(x);

 while (link) {

 printf("%d ", link->value);

 link = link->next;

 }

 printf("]\n");

}

bool contains(list x, int val)

{

 struct link *links = list_links(x);

 while (links) {

 if (links->value == val)

 return true;

 links = links->next;

 }

 return false;

}

Where we see changes is when we create or modify lists, and in most cases, the code

will still look the same; we just get some benefits practically for free. Take the make_

list() function from earlier. It looks mostly like before, but by creating a list instead of a

link pointer, we get some benefits.

list make_list(int n, int array[n])

{

 list x = new_list();

 if (!x) return 0;

 for (int i = n - 1; i >= 0; i--) {

 struct link *link =

Chapter 11 Linked Lists

324

 new_link(array[i], list_links(x));

 if (!link) { // Allocation error -- clean up

 free_list(x);

 return 0;

 }

 list_links(x) = link;

 }

 return x;

}

We allocate a list at the beginning, to get that over with. If the allocation fails, we will

have to report an error, so we might as well do that up front. After that, we can use the

list’s links as we used the link pointer in the previous version. It is initially the empty list,

and as we update it, we add the links to the list. The code is exactly as before, except that

we have to free the entire list if we get an allocation failure. We call free_list() to do

that. We also called free_list() in the previous version, but that function only deleted

links—we had no distinction between lists and links there—but you cannot use the

free_links() function here.

If we successfully allocate all the links, we return the list, and here we have improved

upon the interface of the previous function. With the make_list() from the last section,

we could not distinguish between a failure and an empty list. We could, of course, check

n before we called the function and that way determine if we expected to get an empty

list back, but both empty lists and errors would give us NULL pointers. With our new

representation, NULL is not an empty list and vice versa. An empty list is a pointer to a

NULL pointer, and that is different from a NULL pointer. The new make_list() function

gives us NULL if we have an error, and a list otherwise, and an empty list cannot be

confused for NULL.

The prepend() function looks much like before as well. We create a link, and if that

fails, we return an error. If not, the new link’s next pointer is the input list. Before, we

returned the new link, and we could now have two aliases to the input string: a reference

to it in the calling code and the next pointer in the new link. Now, we change the input

list, so it points to the new link. Because of our new representation, we can modify the

input list.

int prepend(list x, int val)

{

Chapter 11 Linked Lists

325

 struct link *link =
 new_link(val, list_links(x));

 if (!link) return 0;
 list_links(x) = link;

 return 1;
}

For the append() and concatenate() functions, I will write a helper function that

gives us the last link in a chain, when a list is not empty. It looks like the while-loops that

did this in the previous section:

// Only call this with non-NULL links

struct link *last_link(struct link *x)
{

 // When we start from x, there is always

 // a link where we can get the next

 struct link *prev = x;
 while (prev->next) {
 prev = prev->next;

 }

 return prev;
}

Now, to append, we have two cases. If the input list is empty, we do not have a

last link, so we should put the new link we created as the (entire) link chain in the list.

Otherwise, we need to get the last link in the link chain and put the new link as its next.

int append(list x, int val)

{

 struct link *val_link = new_link(val, 0);
 if (!val_link) return 0;

 if (is_list_empty(x)) {
 list_links(x) = val_link;

 } else {
 last_link(list_links(x))->next = val_link;

 }

 return 1;

}

Chapter 11 Linked Lists

326

Concatenate works similarly. We have two cases, one where x is empty, in which case

we should set its link chain to the links in y, or it has links, in which case we should find

the last and set the last link’s next to the links from y. In either case, we should remove

the links from y so we do not have two lists containing the same links, so we do that

before we return.

void concatenate(list x, list y)

{

 if (is_list_empty(x)) {

 list_links(x) = list_links(y);

 } else {

 last_link(list_links(x))->next =

 list_links(y);

 }

 // remove alias to the old y links

 *y = 0;

}

If you want a function that copies elements from one list to another, you can

implement it using concatenate(). Free the existing links, then concatenate the links

into the list (removing them from the second list in the process).

void copy_list(list x, list y)

{

 free_links(list_links(x));

 concatenate(x, y);

}

The two cases, empty and not, and the code that sets a link pointer, in append() and

concatenate(), look very similar. If we take the append() case

if (is_list_empty(x)) {

 list_links(x) = val_link;

} else {

 last_link(list_links(x))->next = val_link;

we could imagine an operation last_next() that would give us

last_next(x) => *x

Chapter 11 Linked Lists

327

if x is empty, and

last_next(x) => last_link(*x)->next

otherwise. If we had such an operation, we could simplify the two cases into one:

last_next(x) = val_link;

Could we get such an operation? Not quite, but very close.

We need an address to write val_link into—either *x or the next value in the last

link. If we write a function that gives us that:

struct link **last_next(struct link **x)

{

 if (*x == 0) return x;

 struct link *prev = *x;

 while (prev->next) {

 prev = prev->next;

 }

 return &prev->next;

}

we can write the two functions as

int append(list x, int val)

{

 struct link *val_link = new_link(val, 0);

 if (!val_link) return 0;

 *last_next(x) = val_link;

 return 1;

}

void concatenate(list x, list y)

{

 *last_next(x) = list_links(y);

 *y = 0;

}

Chapter 11 Linked Lists

328

Since last_next() gives us the address where we should write val_link or y’s links,

we need to dereference before we assign, thus the *last_next(x) expression.

If you want to put lists on the stack, instead of allocating them on the heap with new_

list() and then freeing them again with free_list(), you can do that as well. What you

then need is memory to store the link pointer that a list contains. So, the easiest solution

is to put a link pointer on the stack and work with its address. To make our code easier to

read, we can give it a different name. We can define the type stack_list as a list we have

allocated on the stack, like this:

typedef struct link * stack_list;

You cannot free such a list because you didn’t allocate it on the stack, but you should

still free its links. A macro that frees the links, and set the pointer to NULL to make it an

empty list after we free it, can look like this:

#define free_stack_list(x) \

 do { free_links(x); x = 0; } while(0)

To get a list from it, you take its address, but if you want a more informative

operation, you can again use a macro:

#define stack_to_list(x) (&x)

You can use it as a list, for example, as the destination for a copy, with code like this:

x = make_list(n, array);

stack_list z = 0;

copy_list(stack_to_list(z), x);

free_list(x);

free_stack_list(z);

If you now want to test yourself, you can try to implement other operations. They

work the same way as the first list implementations; you should just remember to update

the input instead of returning new lists.

void delete_value(list x, int val)

{

 // We can use the previous implementation, but update

 // x...

}

Chapter 11 Linked Lists

329

void reverse(list x)

{

 // We can use the previous implementation, but update

 // x...

}

I will wait with implementing these two functions again until the next section,

though. There, we try a slightly different representation, and I can cut off a line or two in

the implementation because of that. It is a very minor change, however, so if you are up

for it, you should give the functions a go now, before you read on.

�Adding a Dummy Element
Adding a level of indirection solves many problems, but a related trick in my experience

solves many more. If you have a data structure where you need to deal with special

cases, such as empty lists represented by NULL pointers, more often than not, the special

cases go away if you add one or more “dummy” elements to the structure. If you write

code where you need to test that one or more pointers are NULL or not, quite often you

can make the code simpler by assuring that they are not NULL. Add objects to the data

structure that do not represent real data, but are there as dummies.

Singly linked lists are simple, so we won’t gain much from trying them here—we got

most of the benefits in the previous section where we changed lists from pointers to links

to pointers to pointers to links—we got rid of NULL as the representation of empty lists.

So, the approach might underwhelm you in its usefulness. We gain a little more in the

next chapter, but you will have to take my word for it when I say that for complex data

structures, you can often gain a lot. We won’t have room for sufficiently interesting data

structures in this book for me to show you. In any case, even if we only gain a little, you will

see that with a simple dummy element at the beginning of each list, we gain all the benefits

we got in the previous section, and in a few places, we write slightly simpler code.

Well, on with it. A list is once again a pointer to links, but we will never accept that a

list is NULL, unless it is to return an error from a function. Instead, a list consists of one

element that we do not consider part of the data it holds. It is a “head” or a “dummy”

link. If you allocate a list, you allocate a link. If you put a list on the stack, you put a link

on the stack (and then work with its address as the list). But the first link is not part of the

real data.

Chapter 11 Linked Lists

330

So, a list is little more than a typedef, and we can define some macros to wrap calls

to link allocation and deallocation:

typedef struct link * list;

#define new_list() new_link(0, 0)
#define free_list(x) free_links(x)

The make_list() function looks much like in the previous section. We allocate a list,

and if that went well, we allocate the links. The only difference is that we write x->next

instead of list_links(x) in the code.

list make_list(int n, int array[n])

{

 list x = new_list();

 if (!x) return 0;

 for (int i = n - 1; i >= 0; i--) {
 struct link *link = new_link(array[i], x->next);
 if (!link) { // Allocation error -- clean up
 free_list(x);

 return 0;
 }

 x->next = link;

 }

 return x;
}

If you are not modifying the list, you also treat it as before, but when you iterate

through the links, you start at x->next. The first link is not real data.

void print_list(list x)

{

 printf("[");

 struct link *link = x->next;
 while (link) {
 printf("%d ", link->value);

 link = link->next;

 }

Chapter 11 Linked Lists

331

 printf("]\n");

}

bool contains(list x, int val)

{

 struct link *link = x->next;

 while (link) {

 if (link->value == val)

 return true;

 link = link->next;

 }

 return false;

}

There is nothing surprising in prepend() either:

int prepend(list x, int val)

{

 struct link *link = new_link(val, x->next);

 if (!link) return 0;

 x->next = link;

 return 1;

}

but with append() and concatenate(), we get slightly more readable code. At least, more

readable if you found

*last_next(x) = val_link;

hard to read. Because a list always has at least one link, there is always a last link. We

do not need the last_next() trick to get a link to append to. We can find the last link, it

always exists, and then we can write to its next member.

struct link *last_link(list x)

{

 struct link *prev = x;

 while (prev->next) {

 prev = prev->next;

 }

Chapter 11 Linked Lists

332

 return prev;

}

int append(list x, int val)

{

 struct link *link = new_link(val, 0);

 if (!link) return 0;

 last_link(x)->next = link;

 return 1;

}

void concatenate(list x, list y)

{

 last_link(x)->next = y->next;

 y->next = 0;

}

Here, we didn’t gain much over the second list representation, but I find this code

more readable, and it is a step up compared to the first implementation we made. If we

had gone directly to the dummy link solution, you would probably agree that we gained

something going here.

With delete_value(), we gain a little as well. Because the input list always has a

link, we can do this: imagine that we split the list in two, the links up to a link we will call

front where all the elements we need to delete are gone and then the rest, from front-

>next, where we still need to delete. We can start by setting front to the list. The value

in the dummy element doesn’t count, so everything up to and including front doesn’t

have the value. Now we repeatedly look at front->next. If front->next has the value, we

remove it (we set front->next to front->next->next and free()). Otherwise, we can

move front to front->next because that link does not have the value, and then we can

continue from that link. This idea can be implemented like this:

void delete_value(list x, int val)

{

 struct link *front = x, *next = 0;

 while (front) {

 while ((next = front->next) &&

 next->value == val) {

Chapter 11 Linked Lists

333

 front->next = next->next;

 free(next);

 }

 front = next;

 }

}

We could also have used this algorithm without the dummy element (I left

implementing delete_value() as an exercise in the previous section, and you can try

implementing this solution). Without the dummy element, however, it is harder to set

the first front pointer.

In reverse(), we avoid a special case when the list is empty. It is not a terrible

burden to handle an empty list, of course, since the reverse of an empty list is just the

empty list, but it goes away. We will always have a next pointer when we begin. We can

use the list itself for the reversed pointer we needed earlier. Once we have a pointer to

the list’s next link, we don’t need to remember it in the input any longer, which means

that we can use the input’s next for reversed, and when we are done with reversing, we

already have the reversed links stored there.

void reverse(list x)

{

 struct link *next = x->next;

 x->next = 0;

 while (next) {

 struct link *next_next = next->next;

 next->next = x->next;

 x->next = next;

 next = next_next;

 }

}

We started out with simple code for a linked list, but with various issues related to

memory management. We resolved those issues by adding a level of indirection, so lists

became more than pointers to links. That first step helped us remove aliases between

links that could potentially be disastrous when freeing memory. If we are careful with

how we write functions, we can avoid them, as long as we can modify our input lists.

Adding a dummy element to the beginning of each list didn’t add much on top of that,

Chapter 11 Linked Lists

334

yet still I will suggest that you always reach for a dummy element when you need a level

of indirection. You get the indirection for free—you already have all the code needed to

work with real elements, and you can reuse it for dummy elements—and you usually

avoid a few special cases for free when you take that approach.

We got rid of memory management issues by removing the chance of aliases through

different references, but this is, of course, only an option when we do not need different

variables to share data. If you cannot avoid that multiple variables or structures refer to

the same allocated data, you must have a strategy for how to delete it. The right strategy

can be highly application dependent, but we will see some general approaches later in

the book. For now, as long as our functions do not leak memory and leave the input and

output in a consistent state that the user can rely on, we will be satisfied.

�Doubly Linked Lists
With singly linked lists, we have immediate access to the first link in the chain, and we

have to search through the list to access others. If we need to delete a link, we need

to have a pointer to the link that goes before it and the link that goes after it, so we

can connect those. We have access to the next link through the next pointer, but the

previous one is something we must keep track of as we search through the list, or we

must find it by searching from the beginning. Inserting a new link y after another, x, is

easy. We simply need to point y->next = x->next and then x->next = y. But inserting

y before x requires that we have access to the link before x (so we can insert after that

link), which again requires that we have a pointer to it from whatever algorithm we are

implementing, or that we search for it. With doubly linked lists, we keep track of both the

link before and after any given link. We have two pointers, prev for the previous link and

next for the next link.

struct link {

 int value;

 struct link *prev;

Figure 11-4.  A doubly linked list with elements 1, 2, and 3 and dummy links at the
beginning and end

Chapter 11 Linked Lists

335

 struct link *next;

};

struct link *new_link(int val,

 struct link *prev,

 struct link *next)

{

 struct link *link = malloc(sizeof *link);

 if (!link) return 0;

 link->value = val;

 link->prev = prev;

 link->next = next;

 return link;

}

With two pointers, we have more special cases to worry about. Either or both of the

pointers can be NULL, so a straightforward implementation leaves a lot of case checking.

However, as I hinted in the previous section, adding dummy elements can greatly reduce

the need for special cases. If we add a dummy link at the beginning and end of each list

(see Figure 11-4), all the real links always have non-NULL prev and next pointers, and

that makes it very easy to manipulate lists.

As long as a link pointer isn’t NULL, its prev and next pointers aren’t NULL either.

That means that we can access the data in neighboring links, and as long as those aren’t

dummy links, their prev and next pointers aren’t NULL either.

Figure 11-5.  A circular list with a dummy head

Chapter 11 Linked Lists

336

This isn’t perfect, though. We don’t have to check if a link’s prev and next are NULL,

if it is a real and not a dummy link, but there are cases where we need a link’s neighbors

to also have non-NULL prev and next links. That means that we have to check if the

neighbors are dummies, which leaves almost as many special cases to check for. Our

code will get simpler if we can ensure that even the dummy links have neighbors, but

what should we make them point to?

A simple solution is the so-called circular list. We will use one dummy link per list,

called head. Its next is the first real link in the list, and its prev is the last real link in the

list. If the list is empty, the head’s two pointers point to the head itself; see Figure 11-5.

With this representation, all links have neighbors.

A circular list doesn’t have to have a dummy element as its head, and some

algorithms and data structures depend on circular lists where any link can function

as the head (so we can move the head to adapt to data we process). For our purposes,

however, having a dummy is easier, as it gives us a representation of empty lists that isn’t

a NULL pointer.

To give ourselves informative names, we can typedef a list head to be a link.

typedef struct link list_head;

We can declare a head on the stack if we want to and use this macro to initialize it to

an empty list:

#define init_list_head(x) \

 (list_head){ .prev = &(x), .next = &(x) }

You can use it as

list_head head = init_list_head(head);

to create a head for an empty list.

The operations we implement will take heads by reference, so we define a list to be a

pointer to a head (which is the same as a pointer to a link, of course).

typedef list_head *list;

To heap-allocate a list, we must allocate a link (which we can do with the new_link()

function from earlier). The head is a dummy, so it doesn’t matter what value we put in it.

We cannot set the pointers in the call to new_link() because we do not have the address

for the head before we allocate it, but we can use init_list_head():

Chapter 11 Linked Lists

337

list new_list(void)

{

 struct link *head = new_link(0, 0, 0);

 if (!head) return 0;

 *head = init_list_head(*head);

 return head;

}

To use a head as a list, get its address. To get the first or last “real” element in a list, we

can use these macros:

#define front(x) (x)->next

#define last(x) (x)->prev

They will give you the head back if the list is empty, so you can test for an empty list

with

#define is_empty(x) ((x) == front(x))

If you want to set a head to an empty list, you need to reinitialize it:

#define clear_head(head) \

 do { (head) = init_list_head(head); } while(0)

If you have a list, so a pointer to a head, you can do

#define clear_list(x) clear_head(*(x))

This doesn’t free the links it holds, however, so we need code to do that first, if we

need it.

To free the links, we must iterate through them. In the last section, we would iterate

as long as the current link isn’t NULL, but now links will never be NULL when we follow

a chain of next pointers. Instead, we must iterate until we get back to the head. Other

than that, there is nothing new. The free_links() function deletes all the (real) links in

a list:

void free_links(list_head *head)

{

 struct link *link = front(head);

 while (link != head) {

Chapter 11 Linked Lists

338

 struct link *next = link->next;

 free(link);

 link = next;

 }

 clear_list(head);

}

It also clears the head, that is, sets it to an empty list, so we don’t risk accessing

deallocated links after we have freed them.

The free_list() frees a heap-allocated list as well.

#define free_list(x) \

 do { free_links(x); free(x); x = 0; } while(0)

This is a macro, so we can set the list pointer to NULL after we have freed it. That can

make the code safer at times, but of course only if x is the only reference to the list. But it

should be, if we free it, so greater problems are present if that isn’t the case.

Use free_links() if you have a stack-allocated head, but free_list() if you have

allocated the list on the heap.

�Link Operations
A simple operation on links is to connect them. If we have links x and y, and we want y to

follow x, then we can connect them by setting x’s next to y and y’s prev to x.

static inline

void connect(struct link *x, struct link *y)

{

 x->next = y;

 y->prev = x;

}

Chapter 11 Linked Lists

339

When we connect x and y, we move the next pointer in x to y, and we lose access to

the links that followed x; see Figure 11-6. Likewise, we lose access to the links preceding

y when we point y->prev to x. The link before y still points to y with its next, and the

link after x still points to x with its prev, but unless we have access to those links from

somewhere else, they are lost to us (which means we would leak memory if we didn’t

handle this correctly). As the figure also illustrates, it is quite possible to put links in an

inconsistent state, where for a link x, x->prev->next != x or x->next->prev != x.

This is something we should avoid doing in our code, but intermediate states in an

update often look like this.

I have written the operation as an inline function because it is short and best

inlined. Since C99, the language has had the inline keyword, which works as a compiler

hint to suggest that the function should be inlined if that gets us more efficient code.

Figure 11-6.  Connecting two links

Chapter 11 Linked Lists

340

inline

void connect(struct link *x, struct link *y)

{

 x->next = y;

 y->prev = x;

}

I would like to use inline, but it requires extra work. It is not enough to define an

inline function; you must also provide a linker symbol for it, if the compiler decides not

to inline. If you do not provide that, you will likely get a linker error. You can specify that

you want to generate an external linkage function from the definition, of course.

extern inline

void connect(struct link *x, struct link *y)

{

 x->next = y;

 y->prev = x;

}

But now you get a copy of that in any compilation unit that includes the definition,

including the linkage symbol, and that will certainly give you linker errors!

Instead, and this is the standard solution, you can declare an inline function

static, as I have done. If so, if the function isn’t inlined, the compiler will generate a

function, but it will only be visible from within the compilation unit, so you don’t get

linker errors. However, you do get duplicated code for everything that the compiler

doesn’t inline. It isn’t perfect, and you can set up your compilation environment to do

better, but it suffices for us here.

If we have a link x and want to make sure that its prev and next links point back to

itself, we can use this operation:

static inline

void connect_neighbours(struct link *x)

{

 x->next->prev = x;

 x->prev->next = (x);

}

It ensures that x at least is in a consistent state with respect to its neighbors.

Chapter 11 Linked Lists

341

Now say we want to insert a link, y, after another, x; see Figure 11-7. We can do this

by connecting y’s prev pointer to x and its next pointer to x->next, so it has the right

neighbors, and then we connect the neighbors, so x->next will point to y and y->next

will point back to y. In code, the operation can look like this:

static inline

void link_after(struct link *x, struct link *y)

{

 y->prev = x;

 y->next = x->next;

 connect_neighbours(y);

}

This code exploits that x has a next link that we can update. If next or prev pointers

could be NULL, we would have to handle special cases. Because we have a dummy head,

this is not an issue.

If you want to insert a link before another instead of after, we can do this:

#define link_before(x, y) \

 link_after((x)->prev, y)

This assumes that x has a prev link, which is a valid link, but this is also guaranteed

by the dummy link. Of course, both x and x->prev might be the dummy, but the code

doesn’t look at the value we store in the links, so it doesn’t care. A link is a link, as far as

this code is concerned.

Chapter 11 Linked Lists

342

If we want to insert values, which we obviously do, we need to allocate links to hold
them. There are cases where we would want to leave allocation to the caller; see, for
example, Chapter 14. Then they can deal with allocation errors, and our code doesn’t have
to worry about it. But for now, we can provide a function that inserts a value before a link:

int insert_val_after(struct link *after, int val)
{
 struct link *link =
 new_link(val, after, after->next);
 if (!link) return 0;
 connect_neighbours(link);
 return 1;

}

Figure 11-7.  Insert link y after link x

Chapter 11 Linked Lists

343

The time we could gain from inlining is small compared to the overhead there is in

allocating memory, so there would be little gain in inlining here.

Except for allocating a new link, there isn’t much new here. We use connect_

neighbours() instead of insert_after() because we have already set the new link’s

neighbors in the allocation, but we could just as easily have called insert_after().

If you want to insert a value before a link, we can use a macro:

#define insert_val_before(before, val) \

 insert_val_after((before)->prev, val)

This is just a wrapper around insert_val_after() where we get the prev link from

before. There is no need for a function here.

If we want to remove a link from a list, we should make its previous and next links

point past it; the previous link’s next should point to the link’s next, and the next link’s

prev should point to the link’s prev (see Figure 11-8).

The operation is fairly straightforward to implement:

static inline

void unlink(struct link *x)

{

 x->next->prev = x->prev;

 x->prev->next = x->next;

}

We will leave the link’s pointers alone, so they still point to the original previous and

next link. After we have unlinked it, it might still be useful to have access to them, even

though the link is no longer part of the list.

Chapter 11 Linked Lists

344

Figure 11-8.  Unlinking x

If you want to delete a link, you should free it as well as unlink it. The following

function does that:

static inline

void delete_link(struct link *x)

{

 unlink(x); free(x);

}

Chapter 11 Linked Lists

345

�List Operations
Given a list, we might want to prepend and append to it. We have two versions of both

operations: the first where we already have a link we wish to prepend or append, in

which case we can use the link_after() or link_before() operations, and the second

where we have a value and need to allocate a link, where we can use the insert_val_

after() and insert_val_before() operations. Turning the existing operations into

prepend/append operations is only a question of giving them new names:

#define prepend_link link_after

#define append_link link_before

#define prepend insert_val_after

#define append insert_val_before

We didn’t have to define these macros, of course. We could equally well have used

the existing. But giving them alternative names can make the intent of our code more

explicit. A drawback is, of course, that compiler errors might get harder to read, as the

compiler will have to explain the expansion of macros when it encounters an error. So it

is a question of taste which you prefer.

The make_list() function looks much the same, but it is a little simpler than the

singly linked list case. With a circular list, we have immediate access to the last element

in the list, so append() is a fast operation. That means that we do not need to run

through the array from the back to the front to prepend. We can run through the array

from the beginning and forward and append.

list make_list(int n, int array[n])

{

 list x = new_list();

 if (!x) return 0;

 for (int i = 0; i < n; i++) {

 if (!append(x, array[i])) {

 free_list(x);

 return 0;

 }

 }

 return x;

}

Chapter 11 Linked Lists

346

We allocate the head as the first operation (and report an error if we couldn’t). After

that, we append the array elements one by one. If there is an allocation error in the

append() operation, we free the list and return NULL. Otherwise, we have successfully

created the list and can return it.

When we have to run through all the links in a list, things are a little different. We start

with the head of the list, as we did when we introduced a dummy for the singly linked lists.

That doesn’t change. We can get the first link we need to look at using the front() macro

that gives us the next link in the head. But where we earlier continued iterating through

next pointers until we hit NULL, we need a different termination condition. With a circular

list, we never reach NULL. When we are done with all the links, we will have returned to the

head of the list. That is what we must compare each link against.

The print_list() function looks like this:

void print_list(list x)

{

 printf("[");

 struct link *link = front(x);

 while (link != x) {

 printf("%d ", link->value);

 link = link->next;

 }

 printf("]\n");

}

We get the first link with front(x). If the list is empty, we will get the head back,

so it is possible that link == x. When that happens, we never enter the loop, which is

what we want. If there are no elements in the list, then we shouldn’t print any. If link is

not x, we iterate. We print the current value and move link to the next link. Once link

progresses all the way back to the head, the loop condition link != x is false, and we

terminate.

The rule is this: you start with front(x), you iterate as long as link != x, and in

each iteration you increment link = link->next. As a for-loop, where the three steps

are made explicit, the function would look like this:

void print_list(list x)

{

 printf("[");

Chapter 11 Linked Lists

347

 for (struct link *link = front(x);

 link != x;

 link = link->next) {

 printf("%d ", link->value);

 }

 printf("]\n");

}

The contains() function, which also has to iterate through the list, follows the same

pattern:

bool contains(list x, int val)

{

 for (struct link *link = front(x);

 link != x;

 link = link->next) {

 if (link->value == val)

 return true;

 }

 return false;

}

To concatenate two lists, x and y, putting the result in x, we must connect the last

element in x, last(x), to the first in y, front(y), and then connect the last link in y,

last(y), to x; see Figure 11-9. In A), we have the two lists before the operations. When

we connect last(x) to front(y), we go to B). Both x and y are in inconsistent states

because their last(x) and front(y) links do not point back to them, but that is fine.

We don’t need consistency yet. We connect last(y) to x, C), and now x->prev points

to last(y), and if we follow the links from x along the circle, we go through all the links

from x and y and end up in x when we have seen them all.

Chapter 11 Linked Lists

348

This leaves x with all the links and y in an inconsistent state—it points to links that do

not point back to it—so we should clear it when we are done to avoid future problems. In

code, it looks like this:

void concatenate(list x, list y)

{

 connect(last(x), front(y));

 connect(last(y), x);

 clear_list(y);

}

Getting the last elements is faster with circular lists than with the singly linked lists we

had in the previous section. There, getting the last link in a list took time proportional to the

number of links in the list, but here it takes constant time. Concatenate is thus a constant

time operation with our current lists, whereas it was a linear time operation before.

Chapter 11 Linked Lists

349

Figure 11-9.  Concatenating x and y, general case

Chapter 11 Linked Lists

350

We don’t delete y, but we empty it. The caller must free it if they no longer need it. We

could free it here that just changes the API. It is a design choice.

This process looks like something that would have special cases if x, y, or both are

empty, since then there is overlap between the various front(), back(), and head links.

By luck more than design, this isn’t the case. The same procedure works when one or

both lists are empty. Consider the case where x is empty, and thus x = back(x); see

Figure 11-10. When we connect back(x) with front(y), we move x->prev so it points at

front(y), and front(y)->prev points to x. This doesn’t change back(y), and when we

connect back(y) to x, x->prev becomes back(y), and once again we have a circle of all

the links starting and ending in x (and an inconsistent y that we clear at the end).

If y is empty (see Figure 11-11), y = front(y) = last(y). We connect last(x) to

front(y) = y and get the case in B), where last(x)->next points to y and y->prev

points to last(x), which makes last(x)=last(y) (remember that last(y) is the link

that y->prev points to). Then, when we connect last(y) to x in C), we point last(x)

back to x (x->prev to last(y) which it was pointing to already). The y list is broken,

which is always the case after concatenation, but x is back in its original state, which is

what we want when we concatenate it with an empty list.

If both lists are empty, Figure 11-12 A), connecting last(x) to front(y) means

pointing x->next to y and y->prev to x, B). That makes back(y) = x, so when we

connect back(y) to x, we set x->next back to x, and we are back where we started with

respect to x. We once again broke y, but who cares about y?

Cases where either list consists of one element do not need special treatment either.

If front(x)=last(x) or front(y)=last(y), we only touch one of their pointers in the

connect() operations, and the concatenation works as if they were different links.

Deleting all occurrences of a value is similar to the singly linked case, except that we

do not need to keep track of the previous link, so we can remove one. Each link already

has a pointer to the previous link, and unlinking and deleting individual links is easy.

You still need to get the current link’s next pointer before you delete it, though, because

once you have freed a link, you cannot get their content.

Chapter 11 Linked Lists

351

Figure 11-10.  Concatenating x and y when x is empty

Chapter 11 Linked Lists

352

Figure 11-11.  Concatenating x and y when y is empty

Chapter 11 Linked Lists

353

Figure 11-12.  Concatenating x and y when both lists are empty

Chapter 11 Linked Lists

354

void delete_value(list x, int val)

{

 struct link *link = front(x);

 while (link != x) {

 struct link *next = link->next;

 if (link->value == val)

 delete_link(link);

 link = next;

 }

}

Reversal is easier than for singly linked lists. You have direct access to both the

beginning and end of circular doubly linked lists, so you can reverse them the way we

did with arrays in Chapter 6. Start with pointers to both ends, swap the values, then move

the pointers forward/backward, and stop when they meet.

#define swap_int(x,y) \

 do { int tmp = (x); (x) = (y); (y) = tmp; } while(0)

void reverse(list x)

{

 struct link *left = front(x);

 struct link *right = last(x);

 while (left != right) {

 swap_int(left->value, right->value);

 left = left->next; right = right->prev;

 }

}

This, of course, will only be fast if the values we store in links are small. Here, we

have integers, and they are quick to swap, but nothing prevents us from implementing

lists where each link holds massive amounts of data. For that matter, we might be writing

generic code that doesn’t know what the links hold; see Chapter 14. Luckily, there is

an even simpler way to reverse a doubly linked list that is just as fast. We can swap the

pointers in each link.

#define swap_p(x,y) \

 do { struct link *tmp = (x); (x) = (y); (y) = tmp; } while(0)

Chapter 11 Linked Lists

355

void reverse(list x)

{

 struct link *p = x;

 do {

 swap_p(p->prev, p->next);

 p = p->prev;

 } while (p != x);

}

When we swap the prev and next pointers in a link, we leave the list in an

inconsistent state. The link’s neighbors do not point back at it. However, if we swap all

the way around the list, we will have a consistent, reversed, list. Consider the example in

Figure 11-13 where we reverse a list containing elements 1, 2, and 3. The next pointers

are drawn as solid lines and the prev pointers as dashed lines. To read the links in order,

you follow the solid arrows from front(x) and back to x. In A), before we reverse the

list, you get 1, 2, and 3. Now, when reversing, we start by pointing p at x, A), and flip its

prev/next to go to B). The flipped pointers are shown as thicker lines. To get to the next

link, we cannot use p->next—it would take us to last(x) and not front(x)—but we

can take p->prev to get to its previous next. It will take us to the link containing 1, and

we are in the state in B). At this point, the list is not in a consistent state. From p, we can

follow next pointers around the links we haven’t processed until we get to x, but the link

x doesn’t match its neighbors. We will fix that as we process the links.

Chapter 11 Linked Lists

356

Once again, we switch p->next and p->prev, and we end up in C). We still have

the unprocessed links in front of us—good because we need to process them—and the

links x and 1 are correctly wired; 1 is last(x), which it should be in the reversed list,

and 1’s next pointer connects it to x. The links between 1 and 2 are not wired correctly,

Figure 11-13.  Reversing a list by swapping next/prev pointers

Chapter 11 Linked Lists

357

but when we move on to D, they will be. Generally, from p->prev, we can follow next

pointers back to x, and get the processed links, in reverse order from where we started.

The links following p, i.e., the links we visit if we follow next pointers starting at p, gives

us the unprocessed links in the original order. As we move on, and in the example that is

the last step, we flip the pointers in link 3 to go to E), and now we have a consistent list.

For all links q, q == q->prev->next and q == q->next->prev, and from x, we can run

around the circle to get all the links. But since all the links were swapped, we run around

the circle counterclockwise, and we get the links in reversed order.

If we start with an empty list, we still swap x’s prev and next pointers, since we use a

do-while loop rather than the usual while loop. We use the do-while because we do not

want to terminate at the first link, which will be x. This, however, is not a problem. If x is

empty, then swapping prev and next gives us the original (empty) list back.

What if you wanted to make a copy of a list? You cannot simply point a list’s head

at the links of another list because then we would not have a consistent list. If we want

two lists with the same elements, they need to have separate links, which means we

need to copy all the values from one list into new links for the copy. Luckily, this is fairly

straightforward. We can iterate through the first list, get the values, and append them to

the second.

list copy_list(list x)

{

 list res = new_list();

 if (!res) return 0;

 for (struct link *p = front(x);

 p != x; p = p->next) {

 if (!append(res, p->value)) {

 free_list(res);

 return 0;

 }

 }

 return res;

}

Chapter 11 Linked Lists

358

The only complication with copying is that we need to deal with allocation errors.

That means that we need to check if the head is successfully allocated, and we need to

check the status of each append(). If we see an error from append(), we must free the list

we have already created before we return NULL, so we do not leak memory.

What about comparing two lists to determine if they are equal, that is, that they hold

the same values and in the same order? Here, we need a loop that goes through the links

in both lists. If we iterate through the links, pair by pair, we can determine that the lists

are not equal if we see different values. If not, we will terminate when we reach the end

of at least one of the lists. Should we reach the end of both lists at the same time, then the

lists were equal, but if we only reached the end of one of the lists, they were clearly not—

one is longer than the other, after all.

bool equal(list x, list y)

{

 struct link *p = front(x);

 struct link *q = front(y);

 while ((p != x) && (q != y)) {

 if (p->value != q->value)

 return false;

 p = p->next; q = q->next;

 }

 return (p == x) && (q == y);

}

The test (p == x) && (q == y) is true if we reached the end of both x and y, and

false otherwise.

�Sorting Doubly Linked Lists
There is nothing particularly special about sorting doubly linked lists, so this section

is not here to teach you anything new about sorting. But sorting linked lists involves

moving pointers around, and so it serves as an excellent excuse to learn more about that.

With linked lists, we cannot access elements in constant time, as we can in an array, so

we cannot use every algorithm for sorting, but many of the classical algorithms still work,

and we will see some of those.

Chapter 11 Linked Lists

359

Incidentally, if you want to check if the elements in a list are sorted, you can do it like

this:

bool is_sorted(list x)

{

 struct link *p = front(x);

 while (p->next != x) {

 if (p->value > p->next->value)

 return false;

 p = p->next;

 }

 return true;

}

We iterate until p->next hits x. Usually, we stop when p reaches back to x, but in this

case, we want to compare two consecutive links, and we do not want to compare a value

with the dummy head, so we stop one link early. In the iteration, we check if the current

value is larger than the next. If it is, those two links at least are out of order, and the list

isn’t sorted. If all links are smaller or equal to the next, then the list is sorted.

�Selection Sort
Selection sort works as follows: you scan through the list, collecting a sorted list behind

you, and in each iteration, you identify a minimal value among the remaining links and

append it to the sorted list. If you always take a minimal value, and your sorted list starts

out empty, then you end up with a sorted list when you are done. If you implement

selection sort on an array, you move the minimal element by swapping with the next

unsorted element, but with linked lists, we can move links without swapping. We can

unlink the minimal element from the unsorted list and append it to the end of the sorted

list by setting the prev and next pointers correctly.

The main function looks like this, and I will explain the two helper functions,

get_smallest() and move_links(), as follows:

void selection_sort(list x)

{

 list_head sorted = init_list_head(sorted);

 while (!is_empty(x)) {

Chapter 11 Linked Lists

360

 struct link *next = get_smallest(x);

 unlink(next);

 append_link(&sorted, next);

 }

 move_links(x, &sorted);

}

We use a stack-allocated list head for the sorted list. There is no need to heap-

allocate this list since we only use it while we sort. Then we iteratively identify a minimal

element, unlink it from the existing list (making x one element shorter), and append it

to sorted. Since we remove a link from x in each iteration, it will eventually be empty, at

which point all the links are in sorted. At that point, the while-loop terminates. All that

remains is to move the links back to x, so it now contains the sorted links.

Finding a minimal link involves searching through x’s remaining links.

struct link *get_smallest(list x)

{

 assert(!is_empty(x));

 struct link *p = front(x);

 struct link *res = p;

 while (p != x) {

 if (p->value < res->value)

 res = p;

 p = p->next;

 }

 return res;

}

The function assumes that the input list is not empty (which it won’t be in

selection_sort()), which means that we have a value in front(x). Of the links we have

seen so far, the front must be the one with the smallest value, so we get a reference to it,

res (for result). Now we iterate through the links, and if we see a link with a smaller value

than the one we have, we update res so it points to the new link. When we are done with

the loop, we have seen all the links in x, and res points to one with a minimal value.

When we are done sorting, the sorted list sits in sorted and x is empty. We need to

move the links back to x, so the caller gets the sorted list; sorted is a local variable and

will be lost as soon as the function returns. To get the links back, we need to connect

Chapter 11 Linked Lists

361

them such that x->next points to the first link in sorted and x->prev points to the last.

We should only do this if sorted is not empty because otherwise we would make x’s prev

and next point to a variable that is soon to be deallocated. The function for moving the

links back to x could look like this:

void move_links(list x, list y)

{

 if (!is_empty(y)) {

 connect(x, front(y));

 connect(last(y), x);

 }

}

If x wasn’t empty when we called the function, the links would be lost, except if y was

empty, in which case x would be unchanged. For our selection_sort() function, this

isn’t an issue. We will always have an empty x, so if y is also empty, we still get the right

result. If you want a version that will always work, we can free x’s links first. This ensures

that we will not leak memory when we change x’s links, and since free_links() sets the

input to the empty list, we are guaranteed that x is empty after that. Such a version could

look like this:

void move_links(list x, list y)

{

 free_links(x);

 if (!is_empty(y)) {

 connect(x, front(y));

 connect(last(y), x);

 clear_list(y);

 }

}

Here, we also clear y, to not leave it pointing to links that now belong to x. For

selection_sort(), where sorted goes out of scope after we move the links, this isn’t an

issue, but for a more general case, we should leave y in a state where it doesn’t refer to

links that are no longer its.

An alternative implementation could look like this:

void move_links(list x, list y)

Chapter 11 Linked Lists

362

{

 free_links(x);

 if (!is_empty(y)) {

 *x = *y;

 connect_neighbours(x);

 clear_list(y);

 }

}

Here, we assign the full content of y into x, which includes the prev and next

pointers. This is likely faster than two invocations of connect() and one of each of

front() and last(). It sets x’s pointers correctly, but we still need to point the beginning

and end links back to x, which is what connect_neighbours() does.

This version is faster than the previous if it is fast to copy the full content of a struct

link from one address to another. When links consist of two points and an integer, that

will be the case. If you pack more data into links, the trade-off might change. If you work

with generic lists (Chapter 14), where links carry more data than captured by the struct

link structure, you will only copy parts of the link (see Chapter 14 for details). When the

links are the heads of lists, however, this will not be an issue.

�Insertion Sort
The insertion sort algorithm works by scanning through the list, keeping a sorted list

behind the current value, and in each iteration, taking the next value and inserting it at

its correct, sorted, position behind the current index. If we sort arrays, we insert the next

value by swapping elements toward the left, until we find the correct location, but with a

linked list, we can simply unlink the next value and insert it into the sorted sequence.

void insertion_sort(list x)

{

 list_head sorted = init_list_head(sorted);

 struct link *p = front(x);

 while (p != x) {

 struct link *next = p->next;

 unlink(p);

 insert_sorted(&sorted, p);

Chapter 11 Linked Lists

363

 p = next;

 }

 move_links(x, &sorted);

}

In this implementation, p runs through the list, and we unlink the values one by one

to insert into the sorted list that we then move back into x when we are done. This is

close to how we would implement it in an array, but since we are unlinking from x, we

can simplify the code slightly. We can iteratively remove the head of the list, which is

what p will be in any case when we keep unlinking it. Then the code looks like this:

void insertion_sort(list x)

{

 list_head sorted = init_list_head(sorted);

 while (!is_empty(x)) {

 struct link *p = front(x);

 unlink(p);

 insert_sorted(&sorted, p);

 }

 move_links(x, &sorted);

}

Given a sorted list and a link, it is straightforward to insert the link at the correct

position. Run through the list until we find the first link with a value larger than the one

we are inserting, and then insert the new link before it.

void insert_sorted(list x, struct link *link)

{

 struct link *p = front(x);

 while (p != x && p->value < link->value)

 p = p->next;

 link_before(p, link);

}

Chapter 11 Linked Lists

364

There is the possibility that the new link has a value larger than all the links in the list
(if nothing else, it will happen when we have an empty list). However, with our circular
lists, we handle this situation the same as for other links if we test for termination before
we test the current link’s value, p->value, in the loop condition. If we reach the end of
the list before we see a link with a larger value, then the new link should go at the end of
the list, but that means putting it before the list’s head, which is what we do.

This insert_sorted() function searches from the left and stops when it finds a
larger value. It does what it is supposed to do, but it is from the opposite direction as the
traditional array version of insertion sort. Links with the same value will be reversed if
we sort with this insertion; in algorithmic terms, the implementation is “unstable.” If we
want to preserve the order of links with the same value, we should put new links behind,
not in front of, the existing links with that value. This is trivial to fix, though. Insert from
the right instead of the left.

void insert_sorted(list x, struct link *link)
{
 struct link *p = last(x);
 while (p != x && p->value > link->value)
 p = p->prev;
 link_after(p, link);
}

�Merge Sort
Merge sort is a divide and conquer algorithm, which means that we are looking at a
recursive solution to sorting. The idea is this: split the list into two parts, sort them
recursively, and then merge the result. The base case for the recursion is if the list is
empty or has length 1, in which case it is already sorted.

void merge_sort(list x)
{
 if (is_empty(x) || front(x)->next == x)
 return; // length zero or one lists are sorted

 list_head y = init_list_head(y);
 split_list(x, &y);
 merge_sort(x); merge_sort(&y);
 merge(x, &y);

}

Chapter 11 Linked Lists

365

The list y goes on the stack, as there is no need to heap-allocate it.

In the array version of merge sort, splitting usually means that we take the first half

of the elements and put in the first list and the second half of the elements and put them

in the second list. This is easy in an array, where we identify sequences by indices, and

getting the middle index is a simple matter of dividing the sequence length by two. With

linked lists, however, we would have to run through all the links to count up the length

and then back through the list to find the link where we should break the list in two. An

easier solution is to run through the list and take every second link and move to the other

list.

void split_list(list x, list y)

{

 assert(is_empty(y));

 struct link *p = front(x);

 while (p != x) {

 struct link *q = p->next;

 unlink(p); append_link(y, p);

 if (q == x) return;

 p = q->next;

 }

}

We run p through the list and point q to the link after p. We unlink p to move it into

the other list, and then we update p, so we skip q, leaving that link in the list. If q is the

head of the list, we shouldn’t skip past it—that would take us back to the beginning

again—so we break the iteration and return from the function if/when that happens.

Merging two sorted lists means moving through them, in each iteration taking the

smallest front of the two and putting it in the output list. We can implement it like this:

void merge(list x, list y)

{

 list_head merged = init_list_head(merged);

 struct link *p = front(x), *q = front(y);

 while((p != x) && (q != y)) {

 struct link *smallest;

 if (p->value < q->value) {

Chapter 11 Linked Lists

366

 unlink(p);

 smallest = p; p = p->next;

 } else {

 unlink(q);

 smallest = q; q = q->next;

 }

 append_link(&merged, smallest);

 }

 concatenate(&merged, x);

 concatenate(&merged, y);

 move_links(x, &merged);

}

We point p and q into the lists, starting at the front. Then we continue as long as we

haven’t reached the end of either list, where we identify the smallest value of the two and

unlink it (and move the corresponding pointer to the next link). We can still get p->next

and q->next after we have unlinked them because we left a link’s pointers alone in the

unlink operation. Of course, they will point somewhere else when we have appended

the link, but we do that after we update the pointers. We append the smallest link to the

output. When we have reached the end of either list, we are done in the loop. The other

list will have elements left unless we started with two empty lists, but we know that these

are larger than those we have in the result so far, so we can simply concatenate them into

the result. We do not have to test which of the lists is empty, because if we concatenate

both of them, one is empty and that operation will not break anything. We return the

result through x, so the final step is moving the merged links there. It is a design choice

to return through x, but by returning through one of the input lists, we avoid heap-

allocating a result list. In any case, the input lists are destroyed in the process; we have

moved all the links from them.

Since we remove the links from the lists when we merge them, we can simplify

the code slightly. If we had copied results into the result, the original lists would be

unchanged, and we would have to run variables p and q through them. So, if you want

a merge() function that doesn’t destroy the input, it is a small change to the preceding

function. Given that we do destroy the input, however, we might as well exploit it.

Instead of using variables p and q, we can get the fronts of the lists directly and unlink the

smallest in each iteration. Such an implementation could look like this:

Chapter 11 Linked Lists

367

void merge(list x, list y)

{

 list_head merged = init_list_head(merged);

 while(!is_empty(x) && !is_empty(y)) {

 struct link *smallest =

 (front(x)->value < front(y)->value)

 ? front(x) : front(y);

 unlink(smallest);

 append_link(&merged, smallest);

 }

 concatenate(&merged, x);

 concatenate(&merged, y);

 move_links(x, &merged);

}

Here, we again loop as long as both lists have more links, but we pick the smallest

link directly from the fronts. We unlink and append, and the unlink() operation will

make smallest->next the new front of its lists, so we still have access to it. Otherwise,

the function works as the previous version.

�Quicksort
The quicksort algorithm gets its name from the low overhead of its operations. Its

expected theoretical running time is not better than merge sort, but moving objects

around involves fewer and simpler operations—on arrays, at least. If we quicksort a

linked list, the operations are not that much simpler. Still, we can implement it to see

how this algorithm can work on lists.

Quicksort is also a divide and conquer algorithm, with a recursion where the base

case is the same as for merge sort—an empty list or a list with one element is already

sorted. The recursive case splits the list into two parts as well, but with a different

strategy. We pick a value, the pivot, from the list, and then we split the list into the

elements smaller or equal to the pivot and then elements larger than the pivot. We

sort the two parts. Now, because all the elements in one part are smaller than all the

elements in the other, and because the parts are sorted, we get the sorted list from

concatenating the two.

Chapter 11 Linked Lists

368

The dangerous part is doing exactly what I described because you could end up

with one of the parts empty. If the pivot is the largest element in the list, for example,

all the elements are less than or equal to it. Then we would recurse on the original data,

entering an infinite recursion. To avoid this, we set the pivot aside in the recursion and

put it back between the two sorted lists when we are done. It has to be larger than or

equal to all the elements in the first list—because we constructed the list that way—so we

will still get a sorted list.

The full algorithm, excluding the partition, looks like this:

void quick_sort(list x)

{

 if (is_empty(x) || front(x)->next == x)

 return; // length zero or one lists are sorted

 // Remove the pivot, to make sure that we reduce

 // the problem size each recursion

 struct link *first = front(x); unlink(first);

 int pivot = first->value;

 list_head y = init_list_head(y);

 partition(x, &y, pivot);

 quick_sort(x); quick_sort(&y);

 append_link(x, first); // Get first back into the list

 concatenate(x, &y);

}

The partitioning looks like many of the functions we have seen before. Run through

the links, and when you have a link with a value larger than the pivot, unlink it and put it

in the second list:

void partition(list x, list y, int pivot)

{

 assert(is_empty(y));

 struct link *p = front(x);

 while (p != x) {

 struct link *next = p->next;

 if (p->value > pivot) {

 unlink(p); append_link(y, p);

Chapter 11 Linked Lists

369

 }

 p = next;

 }

}

I think that by now you have gotten the hang of doubly linked circular lists. Most

algorithms that work on them will look like something we have already seen by now,

and all involve updating the prev and next pointers—because that is all that links

really have—and typically, it involves simple linking and unlinking. Have fun with

experimenting with lists; we will move on to the next topic.

Chapter 11 Linked Lists

371
© Thomas Mailund 2021
T. Mailund, Pointers in C Programming, https://doi.org/10.1007/978-1-4842-6927-5_12

CHAPTER 12

Search Trees
Search trees, or in this chapter specifically binary search trees, are also recursively

defined. A binary search tree is either an empty tree or a node containing a value and two

trees, a left and a right subtree. Furthermore, we require that the value in a node is larger

than all the values in its left subtree and smaller than all the values in its right subtree.

It is the last property that makes search trees interesting for many algorithms. If we

know that the smaller values are to the left, and the larger values are to the right, we can

efficiently search in a tree, as we shall see.

Figure 12-1 shows three different search trees containing the integers 1, 3, 6, and 8. I

have shown empty trees as “ground” symbols, but traditionally we do not show them in

figures, and in the following figures, I will leave them out. In A), the root holds the value 1,

it has an empty left tree, and its right tree’s root holds the value 3. In B), the root holds 6

and has both a left and a right subtree. On the left, the subtree’s root holds the value 3,

and on the right, it holds 8. All the trees in C) have empty right subtrees. As should be

evidently clear, the tree representation for a set of values is not unique, as there are many

ways you can organize the values such that they satisfy the properties. The organization

affects performance when we search, though. When you want to find the node (if any)

that holds the value v, you start in the root of the tree. If the value there is v, you are done

and can return that node. If not, you determine whether v is smaller than the value in the

root, in which case you should search in the left subtree (where the smaller values are). If

on the other hand v is larger, you search in the right subtree. If you reach an empty tree,

the value wasn’t in the tree.

https://doi.org/10.1007/978-1-4842-6927-5_12#DOI

372

The time this search takes is proportional to the height of the tree, which can be

proportional to the number of elements the tree holds (as is the case in the trees in A)

and C) in Figure 12-1). If the tree is balanced, so the depth of the left and right subtrees

is roughly the same for all the nodes, then the depth is logarithmic in the number of

elements. There are many strategies for keeping a search tree balanced, but I will refer

you to a textbook on algorithms and data structures to explore that. In this chapter, we

will only look at strategies for implementing the data structure. For simplicity, we will

only consider trees that hold integers and without duplications.

�Tree Operations
We want to implement the following operations:

	 1.	 Determine if a value is in a tree

	 2.	 Insert a new element in a tree

	 3.	 Delete a value from a tree

and of course we should have code for freeing a tree once we are done with it.

�Contains
If we search for a value v in a tree t, then

	 1.	 If t is empty, we report that v is not in it.

	 2.	 If the value in t is v, then we report that it is.

Figure 12-1.  Three different search trees containing the numbers 1, 3, 6, and 8

Chapter 12 Search Trees

373

	 3.	 Otherwise, if v is smaller than the value in t, we look in t’s left

subtree, and if it is larger, we look in t’s right subtree.

It is a recursive operation, where we have two base cases: t is empty or it holds the

value we are looking for. The recursive case involves searching a subtree, where we can

determine which subtree to search from the value in the root of t.

�Insert
If we want to insert a value, v, in a tree t, then

	 1.	 If t is empty, we should create a tree with a single leaf, a node that

holds the value v and has empty left and right subtrees.

	 2.	 If t has a value, and it is v, then we leave t as it is. It already has

the value, and the order property from the definition prevents a

search tree from holding more than one of the same value.

	 3.	 Otherwise, if v is smaller than the value in t, insert it into t’s left

subtree, and if v is greater, insert it into t’s right subtree.

Again, we have a recursive operation. The base cases are again an empty tree or a

tree with v in its root, and the recursive cases are insertions into the left or right subtree.

�Delete
Deletion is the most complex of the operations. The overall procedure is this:

	 1.	 If t is empty, we are done.

	 2.	 If t’s value is v, then delete t and replace it with a subtree (see the

following).

	 3.	 Otherwise, delete v from the left or right subtree, depending on

whether v is smaller than or greater than the value in v.

Step 2 is where the operation is more complicated than the others. To delete the value

in the root of a tree, we need to construct a tree that still has all the remaining values.

There are two cases here. One, when t has at most one non-empty subtree, we can

immediately replace it, and two, if both its subtrees are non-empty, we replace the value in

t with the largest value in its left subtree and then remove that value from the left subtree.

Chapter 12 Search Trees

374

Consider case one, where t has at least one empty subtree, and consider Figure 12-2.

In the figure, t is the tree rooted in the black node, and the gray triangle represents the

(possible) non-empty tree. If we replace t with its non-empty subtree, we have deleted

the value, since any value appears at most once in a tree. All values in t’s subtree are

smaller than the value in t’s parent, if t is a left subtree, or greater than the value in t’s

parent, if t is a right subtree. So replacing t with its subtree will satisfy the order property

of search trees.

If both of t’s subtrees are non-empty, we cannot replace t by one of them, but we can

do this: find the largest value in the entire tree smaller than v. Since it must be smaller

than v, that value must be in t’s left subtree, and since it should be the largest, it must sit

in the rightmost node in that subtree; see Figure 12-3. To get this value, we go to t’s left

subtree, and then we run down the tree as long as there is a non-empty right subtree.

When we reach a node with an empty right subtree, we have what we are looking for. We

take that value, and we update t’s value to that. Now we have deleted v from the tree, but

we have two copies of the same value, the value in the rightmost node. We need to get rid

of one of them. However, the rightmost node has, by definition, an empty right subtree,

so we can delete that node following the previous case. So, we delete t’s new value from

t’s left subtree, and then we are done.

Figure 12-2.  Deleting in a tree with at most one non-empty subtree

Chapter 12 Search Trees

375

The procedure works just as well by getting the leftmost value in the right subtree,

but we chose the rightmost in the left more by tradition than anything else.

�Free
When we free the memory held in a tree:

	 1.	 To free an empty tree, do nothing—it is already freed.

	 2.	 Otherwise, free the left and the right subtree, and then free the tree.

�Recursive Data Structures and Recursive Functions
We didn’t talk about it when we implemented lists because lists are particularly simple

to work with. Still, when it comes to recursive data structures, it is often useful to think

about operations on them as well in terms of recursion. Recursive solutions are usually

much more straightforward than corresponding iterative solutions, as they closely match

the data structure. However, they come at a cost. If we solve a problem recursively, the

recursive calls can fill the call stack, which will crash our program, if we are lucky, or

corrupt our memory. With search trees, this is usually not an issue. If we keep a search

tree balanced, then the recursion depth is logarithmic in the number of nodes in the

tree. That means that we can double the number of nodes and only have to go one

recursive call deeper. Unfortunately, we are not writing balanced trees in this chapter, so

that will do us no good. And even if we did have balanced trees, there is some overhead

in function calls that we can avoid if we do not use recursion.

Figure 12-3.  Deleting a value in a tree with two non-empty subtrees

Chapter 12 Search Trees

376

So, what can we do when the best solution, from a programming perspective, is clean

recursive code, but where execution constraints prevent us from recursion? We will

explore this with the operations we need on trees in this chapter, but the short answer is

that, sometimes, recursion isn’t a problem, and you can safely use recursive functions.

This is the case with so-called tail recursion. If a function calls itself but immediately

returns the result of the recursive call—so it doesn’t do any further processing with the

result of the recursive call, it just returns it—the function is said to be tail-recursive. Then

recursion isn’t necessary at all. Most compilers, if you turn on optimization, will translate

such functions into loops, and calling them involves a single stack frame only. You do not

risk filling the stack, and you do not get any function call overhead beyond the first call. If

your compiler doesn’t do this for you, it is also trivial to rewrite such a function yourself.

We will see several examples of such recursions.

We cannot always get tail-recursive solutions.1 In a tree, if we need to recurse on both

subtrees of a node, for example, to free memory, then at most one of the recursive calls

can be the result of the function itself. When you are in this situation, you might have to

allocate an explicit stack on the heap. There is more available memory on the heap than

on the stack, so this alleviates the problem with exceeding the stack space. It isn’t always

trivial to replace a call stack with an explicit stack, however. Call stacks do more than

pushing new calls on the stack; when you are done with a recursive call, you also need

to return to the correct position in the calling function. You must emulate function calls

in your own code, and while sometimes easy, it can get complicated. We will see a few

examples of using explicit stacks and discuss why it isn’t advisable in the cases where we

need them for our trees.

If we consider using an explicit stack for something like freeing the nodes in a tree,

there is another issue. If the stack requires that we allocate heap memory—which it

must, if we should be able to handle arbitrarily large trees—then the operation can fail.

Should malloc() return NULL, we have an error. We have to deal with that, but if we need

the memory to complete the recursive tree traversal, then we are in trouble. Something

like freeing memory should never fail—must never fail—because it is practically

impossible to recover from. And even if we can recover from a failure, we likely will leak

memory. It is far better to have a solution where we can reuse memory we already have

to solve the problem. There is, of course, not a general solution for this. What memory

1�At least not in C. In languages with closures, it is possible to use so-called continuation passing
style programming. But that comes with an overhead in itself, and we cannot implement it
without allocating extra memory.

Chapter 12 Search Trees

377

we might be able to reuse and how we can arrange existing memory depend on the data

structure we have. There is usually a solution if you work at it a little bit. We will see a way

to modify search trees that lets us traverse and delete trees without using recursion, an

explicit stack, or any additional memory.

There is much to cover, so read on.

�Direct Implementation
We start by implementing a direct translation of the operations into C. It will have some

issues, in particular with error handling and efficiency, but we will soon fix those.

The data structure for a tree is what you would expect from the examples with lists.

We have a node with a value and two subtrees, and the subtrees must be pointers to the

node type’s struct. We also define a type stree to be a pointer to a struct node:

struct node {

 int value;

 struct node *left;

 struct node *right;

};

typedef struct node *stree;

As with lists, we write a function for allocating the fundamental struct. There it

was a struct link; now it is a struct node. The function takes the member values as

input, but in the insertion function, we will only insert new leaves, so we add a macro

for that case.

struct node *node(int value, stree left, stree right)

{

 struct node *n = malloc(sizeof *n);

 if (n) *n = (struct node) {

 .value = value, .left = left, .right = right

 };

 return n;

}

#define leaf(V) node(V, 0, 0)

Chapter 12 Search Trees

378

The if-statement in the function checks if we got a non-NULL value from malloc(),

and if we did, we assign the values of a struct node into n. You could also have

implemented the function as

struct node *node(int value, stree left, stree right)

{

 struct node *n = malloc(sizeof *n);

 if (n) {

 n->value = value;

 n->left = left;

 n->right = right

 };

 return n;

}

There is no particular good reason to prefer one version over the other; I just happen

to like the first one.

A direct translation of the contains() operation will look like this:

bool contains(stree t, int val)

{

 if (!t) return false;

 if (val == t->value) return true;

 if (val < t->value) return contains(t->left, val);

 else return contains(t->right, val);

}

This is a good solution for that operation, and there is nothing I would change about

it. It is simple, it follows the definition of the operation directly, and it is tail-recursive.

In the two recursive cases, the return value of contains() is the direct result of the

recursive calls to contains(). This means that likely your compiler will translate the

recursive calls into a loop in the generated code. If you are not afraid to look at assembler

code, you can check the generated code using, for example, godbolt.org, where I have

put this function at the link https://godbolt.org/z/3adTr3. There, you can see

what different compilers will generate for this function. If you generate code without

optimization, the recursive functions will have one or more 'call' instructions in them.

If you turn on optimization, that call disappears and you have loops (in various forms,

Chapter 12 Search Trees

https://godbolt.org/z/3adTr3

379

depending on the compiler). Godbolt.org is an excellent resource if you want to know

what code your compiler is generating. To check if a tail-recursive function is translated

into a loop, you can generally check if it generates code with a call instruction or not.

If your compiler isn’t supported by godbolt.org, you will have to generate the assembler

yourself—the compiler’s documentation will tell you how—and then you can check.

Compilers generally translate tail-recursive functions into loops. The C standard doesn’t

require it, but it is usually a safe assumption.

The insert() operation looks like this:

stree insert(stree t, int val)

{

 if (!t) return leaf(val); // can fail, but we don't handle it

 if (val < t->value) {

 t->left = insert(t->left, val);

 } else {

 t->right = insert(t->right, val);

 }

 return t;

}

We return a new leaf with the value if t is empty. If val is smaller than t->value,

update t’s left subtree with an insertion, and if it is greater, we update t’s right subtree

with an insertion. If t->value == val, we don’t do anything; we just return t at the end

of the function.

This function is more problematic than contains(). First, we might have an

allocation error in leaf(), in which case we return an empty tree that shouldn’t be

empty. This is easy to capture if we start out with an empty tree since we will probably

notice that adding a value to an empty tree shouldn’t give us an empty tree back.

However, if we insert into a non-empty tree, we call recursively down the tree structure,

and somewhere down there, we insert an empty subtree that should have been a leaf. We

do not get any information about that back from the call. We get a pointer to the input

tree back regardless of whether there was an error or not.

One fix to this problem is allocating the new leaf before we recursively insert it

into the tree. That way, we can return NULL in case of an error, and since a successful

insertion can never return an empty tree, we can recognize this as an error.

Chapter 12 Search Trees

380

stree insert_node(stree t, struct node *n)

{

 if (!t) return n;

 if (n->value == t->value) {

 free(n); // it was already here

 } else if (n->value < t->value) {

 t->left = insert_node(t->left, n);

 } else {

 t->right = insert_node(t->right, n);

 }

 return t;

}

stree insert(stree t, int val)

{

 struct node *n = leaf(val);

 if (!n) return 0;

 return insert_node(t, n);

}

Of course, if the value is already in the tree, we have allocated a new node for

no reason, but that is the cost of handling allocation errors correctly here. Upfront

allocation, even if you risk deleting again, is often an acceptable solution to problems

such as these. If you want to avoid an extra allocation, you can always call contains()

first (at the cost of an extra search).

Another issue is that the function is not tail-recursive. When we insert val in a

subtree, we need to update one of t’s subtrees accordingly. When we have more work

to do after a recursive call, we cannot get tail recursion. Consequently, there will be

function calls here, with the overhead they incur and the risk of exceeding the stack

space.

To delete, we need a function for finding the value in the rightmost node in a tree. We

can implement a function for that like this:

int rightmost_val(stree t)

{

 assert(t);

Chapter 12 Search Trees

381

 if (!t->right) return t->value;

 else return rightmost_val(t->right);

}

We will not call it with an empty tree, so we assert that. Otherwise, t->right would

be dereferencing a NULL pointer, which we always want to avoid. We test if there is a

right subtree, and if there isn’t, we return t’s value. Otherwise, we continue searching in

t’s right subtree. The function is tail-recursive, and with an optimizing compiler, you get

an efficient looping function.

Now we can delete():

stree delete(stree t, int val)

{

 if (!t) return t;

 if (val == t->value) {

 if (!(t->left && t->right)) {

 stree subtree = t->left ? t->left : t->right;

 free(t);

 return subtree;

 } else {

 t->value = rightmost_val(t->left);

 t->left = delete(t->left, t->value);

 }

 } else if (val < t->value) {

 t->left = delete(t->left, val);

 } else if (val > t->value) {

 t->right = delete(t->right, val);

 }

 return t;

}

If we have an empty tree, the result is the tree itself. If t’s value is the one we are

deleting, we have the two cases discussed earlier. When t doesn’t have both subtrees, we

remove t and return its subtree. The expression

t->left ? t->left : t->right

Chapter 12 Search Trees

382

will give us the left subtree if it isn’t empty and otherwise give us the right subtree.

If both trees are empty, we get the right subtree, but that doesn’t matter, since they are

both NULL. If t has both subtrees, we get the rightmost value, put it in t->value, and

then we delete it from t->left.

Finally, if t->value is greater or smaller than val, we delete recursively, updating the

left or right subtree accordingly.

This function, like insert(), is not tail-recursive. Updating the subtrees after the

recursive calls prevents this.

When we free a tree, we must free both subtrees as well. The function can look like

this:

void free_stree(stree t)

{

 if (!t) return;

 free_stree(t->left);

 free_stree(t->right);

 free(t);

}

This, obviously, isn’t tail-recursive either. We cannot make it tail-recursive because

there are two recursive calls involved.

If you want to make a tree from an array, you could write a function such as this:

stree make_stree(int n, int array[n])

{

 stree t = 0;

 for (int i = 0; i < n; i++) {

 t = insert(t, array[i]);

 }

 return t;

}

We don’t have recursion issues here, at least not directly. We iteratively call insert()

(which does have recursion issues).

If you want to print a tree, you want to print the left and right subtrees as well, so here

we need recursion, and again we cannot get tail recursion because of the two recursive

calls:

Chapter 12 Search Trees

383

void print_stree(stree t)

{

 if (!t) return;

 putchar('(');

 print_stree(t->left);

 putchar(',');

 printf("%d", t->value);

 putchar(',');

 print_stree(t->right);

 putchar(')');

}

�Pass by Reference
The problems we have with insertion and deletion are caused by the same design flaw

we had in the first list implementation in Chapter 11. We have designed the functions

such that they return a new tree instead of modifying an existing one. That means that

the recursive calls give us the trees we now need to store in one of t’s subtrees. The

changes we made to lists will also work here. We want the functions to take a tree that we

can update as input. That means that an empty tree cannot be a NULL pointer, but must

be something else, or at least that if it is a NULL pointer, it is passed by reference. We can

use either of the solutions from the lists, make a pointer to pointers our representation,

or use a dummy node. The first solution will work for us here, so that is what we will do.

We will still have the type stree be a pointer to struct node, but change the

operations, so they work with pointers to stree instead of stree. So the functions take

pointers to pointers to nodes. An empty tree is a pointer to a NULL pointer.

An stree * pointer on the stack will work fine for a tree; we just have to pass it by

reference in function calls, but should you want a heap-allocated tree, we can provide a

function for that as well:

stree *new_stree(void)

{

 stree *t = malloc(sizeof *t);

 if (t) *t = 0;

 return t;

}

Chapter 12 Search Trees

384

It allocates an stree * pointer and, if successful, sets the pointed-to value to NULL,

making it an empty tree.

If we heap-allocate trees, we should also have a function for freeing them again. So

let us change the name of the free_stree() function from before to one that makes it

explicit that it is only freeing nodes:

void free_nodes(struct node *n)

{

 if (!n) return;

 free_nodes(n->left);

 free_nodes(n->right);

 free(n);

}

and provide a second function for freeing a tree as well.

static inline

void free_stree(stree *t)

{

 free_nodes(*t);

 free(t);

}

Now we make the operations take an stree * argument, which means that we must

dereference the argument to get the node. For contains(), the function changes to this:

bool contains(stree *tp, int val)

{

 assert(tp);

 stree t = *tp;

 if (!t) return false;

 if (val == t->value) return true;

 if (val < t->value) return contains(&t->left, val);

 else return contains(&t->right, val);

}

To make the code more readable, I cast *tp to an stree so I can refer to the tree

with the variable t. Little else changes in the function, but in the recursive calls we

must provide an address of a tree, not the tree itself. So, we get the address of t’s left or

Chapter 12 Search Trees

385

right subtree when we call contains() recursively. We need to call contains() with an

address of a struct node pointer, so we call recursively with &t->left (the address of

left subtree) or &t->right (the address of the right subtree). The & operator binds such

that &t->left means &(t->left), the address of t’s left member, not (&t)->left,

which would be the left member of whatever structure the address of t is. Since &t isn’t

a pointer to a structure, it is a pointer to a pointer, and it hasn’t got a left member, the

expression (&t)->left would give you a type error.

When we use a pointer to a tree in insert(), we will interpret it as the target position

where we should insert. If the target points to NULL, we have an empty tree, and if we

write a node into the target, we have put a tree there. Thus, we can write insert() as

bool insert(stree *target, int val)

{

 assert(target);

 stree t = *target;

 if (!t) {

 return !!(*target = leaf(val));

 }

 if (val < t->value) {

 return insert(&t->left, val);

 } else {

 return insert(&t->right, val);

 }

}

We, once again, get the tree that target points to, to make the code more readable.

If it is NULL, then target is an address that holds an empty tree, and we want that

address to hold a new leaf instead. We, therefore, allocate a leaf and put it in *target. An

assignment is also an expression, so (*target = leaf(val)) gives us a value. It is the

right-hand side of the assignment, which is the new leaf. If the allocation failed, we get

NULL. If we turn a pointer into a truth value (with the !! trick we have seen before), then

we turn the assignment into a value that is true if the allocation was successful and false

otherwise, which we will return to indicate whether the insertion was successful or not.

The recursive cases didn’t change, except that we pass the address of the subtrees

along in the call, instead of just the subtrees. That means that we can modify the tree we

use in the recursion, so we don’t need to update the tree after the call. The function is

now tail-recursive.

Chapter 12 Search Trees

386

Be careful when you use an address as a parameter to a function call. You can get

into trouble if it is the address of a stack object. There is nothing wrong with it per se.

If we put a tree (an stree object) on the stack, and use it with our operations, then we

have a tree on the stack, and as long as we do not use it after we have returned (which

we can’t as it is gone by then), then all is well. But if we, for example, took the address

of t and passed it along in a recursive call in insert(), we could write into the address,

but we would be writing into a local variable. What we put there is lost once the call

to insert() is done. Also, the compiler would see that we use the address of a local

variable that presumably should change in recursive calls where we get new memory for

local variables, so the tail recursion optimization would not be possible. That, though,

is a minor problem, since the function would be broken already if we attempt to pass

addresses of local variables along in the call. It is not what we do here, of course. The

addresses we pass along in the function calls are addresses in heap-allocated nodes.

The updated delete() is also tail-recursive:

stree *rightmost(stree *t)

{

 assert(t && *t);

 if (!(*t)->right) return t;

 else return rightmost(&(*t)->right);

}

void delete(stree *target, int val)

{

 assert(target);

 stree t = *target;

 if (!t) return;

 if (val == t->value) {

 if (!(t->left && t->right)) {

 stree subtree = t->left ? t->left : t->right;

 *target = subtree;

 free(t);

 } else {

 stree *rm_ref = rightmost(&t->left);

 stree rm = *rm_ref;

Chapter 12 Search Trees

387

 t->value = rm->value;

 *rm_ref = rm->left;

 free(rm);

 }

 } else if (val < t->value) {

 delete(&t->left, val);

 } else if (val > t->value) {

 delete(&t->right, val);

 }

}

Our new rightmost() returns the address that holds the pointer to the rightmost

tree; see Figure 12-4. We search down a tree’s right trees until we get to a node where

right is empty. However, the variable we use in the function is the address that holds

the tree, not the tree itself. So, when we reach the rightmost node, the parameter to

the rightmost() call is the address in the parent node. Dereferencing the result of the

rightmost() call gives us the rightmost node, and writing into the result changes the

Figure 12-4.  Return value of rightmost()

Chapter 12 Search Trees

388

right tree in the parent. We exploit this to delete the rightmost value from the left tree.

We dereference the rightmost reference to put the value into t, and then we replace the

rightmost tree with its left child directly, no second call to delete() this time.

Our remaining functions, make_stree() and print_stree(), do not change much.

We will heap-allocate a new tree pointer in make_stree(), and we will pass the tree by

reference in print_stree():

stree *make_stree(int n, int array[n])

{

 stree *t = new_stree();

 if (!t) return 0;

 for (int i = 0; i < n; i++) {

 if (!insert(t, array[i])) {

 free_stree(t);

 return 0;

 }

 }

 return t;

}

void print_stree(stree *t)

{

 if (!*t) return;

 putchar('(');

 print_stree(&(*t)->left);

 putchar(',');

 printf("%d", (*t)->value);

 putchar(',');

 print_stree(&(*t)->right);

 putchar(')');

}

In print_stree(), I didn’t bother with a variable that holds the dereferenced value

of the parameter. Here, t is the pointer to a tree. That means that I need to dereference t

to get a tree, which is why you see expressions such as &(*t)->left. We dereference t to

get a tree, *t, then get the left tree in that, (*t)->left, and then we get the address of

that tree, &(*t)->left.

Chapter 12 Search Trees

389

�Refactoring
The recursive search in contains(), insert(), and delete() (except for rightmost())

is the same, so we can extract it into a separate function and refactor the code. We can

write a function, find_loc() (find location), that returns the address that points to the

node with a given value or, if the value isn’t in the tree, the address where it should sit. It

would look like this:

stree *find_loc(stree *t, int val)

{

 if (!*t || (*t)->value == val)

 return t;

 else if (val < (*t)->value)

 return find_loc(&(*t)->left, val);

 else

 return find_loc(&(*t)->right, val);

}

To see if a tree has a value, find the location, and check if there is a tree there. If

there is, the tree contains the value. If there isn’t, it doesn’t. Since find_loc() returns

the address where the tree should be, we must dereference it and turn the pointer into a

truth value:

bool contains(stree *t, int val)

{

 return !! *find_loc(t, val);

}

In insert() and delete(), instead of searching, we call find_loc(), and then we

update the tree according to what we find:

bool insert(stree *t, int val)

{

 stree *target = find_loc(t, val);

 if (*target) return true; // already there

 else return !!(*target = leaf(val));

}

Chapter 12 Search Trees

390

void delete(stree *t, int val)

{

 stree *target = find_loc(t, val);

 if (*target) {

 stree t = *target;

 if (!(t->left && t->right)) {

 *target = t->left ? t->left : t->right;

 free(t);

 } else {

 stree *rm_ref = rightmost(&t->left);

 stree rm = *rm_ref;

 t->value = rm->value;

 *rm_ref = rm->left;

 free(rm);

 }

 }

}

�Iterative Functions
The contains(), insert(), and delete() operations are no longer recursive, but they

rely on find_loc() and rightmost() that are. Both of those, however, are tail-recursive,

so the code that the compiler generates, when you enable optimization, will not involve

function calls. Of course, if you are not comfortable relying on the mercy of your

compiler’s optimization, you can translate the functions into iterative ones yourself. With

tail-recursive functions, that is usually straightforward.

Take find_loc():

stree *find_loc(stree *t, int val)

{

 if (!*t || (*t)->value == val)

 return t;

 else if (val < (*t)->value)

 return find_loc(&(*t)->left, val);

Chapter 12 Search Trees

391

 else

 return find_loc(&(*t)->right, val);

}

We want to replace recursion with a loop, so we make a loop condition that should

terminate the loop when we would directly return from the recursion’s base case. The

inversion of the base case condition will usually do.

stree *find_loc(stree *t, int val)

{

 while (*t && (*t)->value != val) {

 // loop body

 }

 return t;

}

Then, inside the loop body, where you would normally call recursively, you update

the function arguments instead. A recursive call will give the parameters new values; we

give them those values directly. So

find_loc(&(*t)->left, val);

would become

t = &(*t)->left; val = val;

where the assignment to val is obviously not necessary here. The looping version of

find_loc() looks like this:

stree *find_loc(stree *t, int val)

{

 while (*t && (*t)->value != val) {

 if (val < (*t)->value) {

 t = &(*t)->left;

 } else {

 t = &(*t)->right;

 }

 }

 return t;

}

Chapter 12 Search Trees

392

Similarly, the loop version of rightmost(), translated using the same procedure,

looks like this:

stree *rightmost(stree *t)

{

 while ((*t)->right)

 t = &(*t)->right;

 return t;

}

�Explicit Stacks
Free and print still use recursion. If we want to avoid exceeding the stack space, we can

move the recursion from the call stack to an explicit stack. We shall see that it carries its

own problems, but let us implement it first.

One way to represent a stack is as a singly linked list. Stack frames hold the

information we need for the recursions and then a next pointer to the next stack frame.

A stack is empty if it is NULL. For free_nodes(), we can implement the stack and stack

frames like this:

struct free_frame {

 struct node *node;

 struct free_frame *next;

};

void free_push(struct free_frame **stack, struct node *node)

{

 if (!node) return;

 struct free_frame *frame = malloc(sizeof *frame);

 if (!frame) abort(); // We do not tolerate errors!

 *frame = (struct free_frame){ .node = node, .next = *stack };

 *stack = frame;

}

Chapter 12 Search Trees

393

struct node *free_pop(struct free_frame **stack)

{

 struct free_frame *top = *stack;

 struct node *node = top->node;

 *stack = top->next;

 free(top);

 return node;

}

The push() and pop() functions take the stack by reference, a pointer to a pointer

to a stack frame, so they can modify the stack. When we push(), we allocate a new stack

frame, initialize it with a node and the top of the stack, and then we point the stack to

the new frame so the new frame is now the top of the stack. If the allocation fails, we

terminate the program. Freeing data should never fail because we don’t know how to

handle such a situation—we are probably leaving the program in an inconsistent state,

and we will most likely leak memory. We could attempt to recover, so we don’t crash the

entire program, but here I give up and call abort(). In the following printing code, we

will recover slightly more gracefully.

Now the free_nodes() function pushes its input on the stack, and then it loops as

long as there are stack frames. It pops the top frame, pushes the two subtrees, and frees

the node:

void free_nodes(struct node *n)

{

 struct free_frame *stack = 0;

 free_push(&stack, n);

 while (stack) {

 n = free_pop(&stack);

 free_push(&stack, n->left);

 free_push(&stack, n->right);

 free(n);

 }

}

Chapter 12 Search Trees

394

When we push the left child first, we process it last, since stacks work in a first-in,

first-out fashion. If we wanted to process the left tree first, as we do in the recursion, we

would have to push the subtrees in the opposite order. It doesn’t matter when we are

deleting the nodes, though, so deleting right subtrees before left subtrees is fine.

When we print a tree, we need the left subtree printed before the right subtree, so

there we must push the right subtree before the left subtree. However, handling printing

is slightly more complicated than that. There are multiple operations we need to do

before and after the recursive calls. We must print a left parenthesis before we handle

the left subtree. We must print a comma, the node’s value, and another comma after the

recursive call to the left; only then can we recurse on the right, and once we are done on

the right, we must print a right parenthesis. Replacing a call stack with an explicit stack

is often complicated if you need to return to different states in your function after the

recursive calls. There are different techniques and strategies for dealing with a function’s

state when we move to an explicit stack. Still, although the printing function is more

complex than free_nodes(), it is quite simple, and the solution we implement later

just pushes the various operations we do in the function. In our stack frames, we put an

operation, which can be LPAR for printing “(”, TREE for handling a tree recursively, COMMA

for printing a comma, VALUE for printing a node’s value, and RPAR for printing “)”. For

TREE and VALUE, we need an associated node, so we have a struct node pointer in the

stack frame as well.

enum print_op {

 LPAR, TREE, COMMA, VALUE, RPAR

};

struct print_frame {

 enum print_op op;

 struct node *node;

 struct print_frame *next;

};

The stack is a pointer to a frame as well, but I will also put a jmp_buf to handle

allocation errors. This is a buffer in which we can store the program’s state, which in

practice means its registers. If we call the function setjmp(), we store the registers. If

we later call longjmp(), we restore them. Restoring means that we reset the stack and

instruction pointers, so the program goes to the position on the stack where we called

setjmp(), and the instruction pointer starts executing right after the call to setjmp().

Chapter 12 Search Trees

395

The only difference between the call to setjmp() when we stored the registers and

when/if we returned to it from a longjmp() is that setjmp() returns zero the first time

and a value we give to longjmp() the second time.

The setjmp()/longjmp() functions are a crude version of raising and catching

exceptions. We can return to an arbitrary point on the stack, with the program’s registers

restored, but there is no checking for whether it is a valid state. You can call longjmp()

with registers that moves you to a stack frame that is long gone. The mechanism does

nothing to clean up resources, and if you lose pointers to heap-allocated memory

in a jump, then it is gone. You need to be careful to free resources when you use this

mechanism, just as you must be with normal returns from functions. It is highly unsafe,

but it will work for our purposes here. We get a way to return to our printing function

from nested function calls that push to the stack.

So, we define a stack like this:

struct print_stack {

 struct print_frame *frames;

 jmp_buf env;

};

and implement push as

void print_push(struct print_stack *stack,

 enum print_op op, struct node *node)

{

 struct print_frame *frame = malloc(sizeof *frame);

 if (!frame) longjmp(stack->env, 1); // bail!

 *frame = (struct print_frame){

 .op = op, .node = node, .next = stack->frames

 };

 stack->frames = frame;

}

An allocation failure results in a longjmp() which we will catch in the main function.

The second argument to longjmp(), here 1, is what setjmp() will have returned in the

restored state. As long as it is not zero, we can recognize that we have returned from a

longjmp(). We won’t implement a pop() operation because we will deal with popping

directly in the printing function.

Chapter 12 Search Trees

396

The following two functions push the operations we need to do for one node and

execute an operation we have popped from the stack:

void schedule_print(struct print_stack *stack,

 struct node *node)

{

 print_push(stack, RPAR, 0);

 if (node->right) print_push(stack, TREE, node->right);

 print_push(stack, COMMA, 0);

 print_push(stack, VALUE, node);

 print_push(stack, COMMA, 0);

 if (node->left) print_push(stack, TREE, node->left);

 print_push(stack, LPAR, 0);

}

void handle_print_op(enum print_op op, struct node *node,

 struct print_stack *stack)

{

 switch (op) {

 case LPAR: putchar('('); break;

 case RPAR: putchar(')'); break;

 case COMMA: putchar(','); break;

 case VALUE: printf("%d", node->value); break;

 case TREE: schedule_print(stack, node); break;

 }

}

The print function initializes the stack and stores the register states. Then we

schedule the first node and iteratively get the top of the stack, take the operation and

node from it, and free the top frame before we handle the operation.

void print_stree(stree *t)

{

 if (!*t) return;

 enum print_op op;

 struct node *n = 0;

Chapter 12 Search Trees

397

 struct print_stack stack = { .frames = 0 };

 if (setjmp(stack.env) != 0) goto error;

 schedule_print(&stack, *t);

 while (stack.frames) {

 struct print_frame *top = stack.frames;

 op = top->op; n = top->node;

 stack.frames = top->next;

 free(top);

 handle_print_op(op, n, &stack);

 }

 return;

error:

 while (stack.frames) {

 struct print_frame *top = stack.frames;

 stack.frames = top->next;

 free(top);

 }

}

If we get an allocation error, then the push function will call longjmp(), which results

in us returning from setjmp() a second time, but now with a non-zero return value. If

that happens, we goto the error label and free the stack. In the while-loop, we must free

top before we call handle_print_op(). We might not return from handle_print_op—the

longjmp() error handling will send us directly to the setjmp()—so we must leave the

function in a state where the code in error can clean up all resources. If we free top

before we handle the operation, all the stack frames are on the stack, and the error

handling code will free them.

Here, we can handle an error, but we cannot undo the damage we have done by

writing parts of the tree to output and then bailing. What we print, we cannot undo.

And when we use an explicit stack, we can get allocation errors we will have to recover

from (unless we give up and abort, as with free_nodes()). There are many cases where

we need to dynamically allocate memory for stacks and queues and whatnot when our

programs run, but for freeing memory, or for operations that we cannot undo, we should

try hard to avoid allocations. This isn’t always possible, but for traversing trees, there are

tricks.

Chapter 12 Search Trees

398

If you want to traverse a tree, and you don’t want to allocate new memory doing it,

you have several options. A general option you always have, regardless of whether we

consider trees or other objects, is to set aside memory for a stack in your data structures.

Add one pointer to the struct node, and you can chain them in a stack if you want to.

Pushing and popping works as before, but the stack pointer sits embedded in the struct.

struct node {

 int value;

 struct node *left;

 struct node *right;

 struct node *stack;

};

stree node(int value, stree left, stree right)

{

 stree t = malloc(sizeof *t);

 if (t) *t = (struct node){

 .value = value,

 .left = left, .right = right,

 .stack = 0

 };

 return t;

}

void push_node(struct node **stack,

 struct node *node)

{

 if (node) {

 node->stack = *stack;

 *stack = node;

 }

}

struct node *pop_node(struct node **stack)

{

 struct node *top = *stack;

 *stack = top->stack;

Chapter 12 Search Trees

399

 top->stack = 0;

 return top;

}

Then you can free the nodes with

void free_nodes(struct node *n)

{

 struct node *stack = 0;

 push_node(&stack, n);

 while (stack) {

 n = pop_node(&stack);

 push_node(&stack, n->left);

 push_node(&stack, n->right);

 free(n);

 }

}

For more complex recursions, though, a node must hold all the information

necessary for that algorithm, so the structure can grow in complexity beyond what we

are willing to accept.

�Morris Traversal
Many algorithms can traverse a tree without using an implicit or explicit stack, and we

will see one in this section. This algorithm, Morris traversal, doesn’t require that we add

any additional data to the nodes. Instead, it uses a clever way to modify the tree as we

traverse it, to simulate recursion, and then restores it to its initial state as the simulated

traversal returns.

The algorithm simulates an in-order traversal, that is, one where we first visit all the

nodes in the left subtree of a node, then we handle the node, and then we visit all the

nodes in the right subtree. Or in C, it simulates this function:

void inorder(struct node *n)

{

 if (!n) return;

 inorder(n->left);

Chapter 12 Search Trees

400

 printf("%d\n", n->value);

 inorder(n->right);

}

The Morris traversal algorithm is closely related to so-called threaded trees (also

invented by Morris). These are search trees with an additional property. If a tree doesn’t

have a left or a right subtree, that subtree is replaced by a pointer to the node with the

next smallest (left) or next highest (right) node in the tree. Figure 12-5 shows an example,

where I have only drawn the thread pointers for right subtrees, as those are the only ones

we need for the traversal we will implement. The tree holds the values 1, 3, 4, 5, 6, 7, and

8. Node 1 is a leaf, so it does not have left and right subtrees, but it has a pointer to the

next value in the tree, 3. Node 4, likewise, doesn’t have subtrees, so it has a pointer to the

node with value 5. Node 5 does have a left subtree, but not a right subtree, so its (right)

thread pointer points to the next value, 6, and so on. Node 8 doesn’t have a right subtree,

but there is no node with a higher value, so its threaded right pointer is NULL.

Figure 12-5.  A (right) threaded tree

Chapter 12 Search Trees

401

Imagine that we need to do an in-order traversal of such a tree. We can recurse by

following left pointers as long as we have them, which in the example will take us to

node 1. Here, we cannot continue further left, so we visit 1 (we have, trivially, visited all

its left children). Now we recurse to the right, that is, we follow its right pointer. Node 1

doesn’t have a right child, but we have a “threaded” pointer instead that works like one,

so going right from 1 corresponds to returning from the recursion to node 3. When we

enter node 3, we would have to recurse to the right, unless we can recognize that we had

already been there, so let us, for now, assume that we tag the nodes so we can tell that

we have already been to node 3 once. If we can see that, we know that we came back

from a left recursion, so we visit node 3 and recurse to the right. In 5, a node we haven’t

seen before, we recurse to the left, and we get to node 4, where we cannot go further

left. We visit 4 and go right. That takes us back to 5, where we realize that we have been

before, so we go right instead of left this time, which takes us up to 6. Recognizing that

we have been here before, we go right instead of left, to 8, and recurse from here. We

have not been here, so we go left, to 7. We cannot continue left, so we go right, back to 8.

Since we have been in 8 once before, we visit the node, and then we go right. This time,

there is no right child, threaded or otherwise, so the traversal ends.

If we have a threaded tree, the “recursion” works as follows: If we have a node we

haven’t seen before, we go left. If we have a node that we have seen before, we visit it and

go right. “Returning” from the recursion happens whenever a step to the right is along a

threaded pointer rather than a real subtree.

How can we get the threaded pointers, and how can we recognize that we are in a

node that we have seen before? Notice that if you have a node “n”, and another node, m,

has a threaded pointer to it, then n is the next value after m in the tree. That means that

m is the rightmost node in n’s subtree. So we can go from n to m with our rightmost()

function. Once there, we can, of course, write a pointer to n into the right subtree. So

when we enter a node the first time, we can run down and find the node where we

should insert a threaded pointer. How do we recognize that we have visited a node

before? If we search for the rightmost node in the left subtree, and we encounter the

node itself, then we have inserted it the first time we visited the node! So the same

rightmost search will tell us if we are seeing a node for the first time or for the second

time.

Chapter 12 Search Trees

402

We can modify the rightmost() function to get a rightmost_to() function that

stops early in the recursion if we encounter a given node. If we didn’t have that stop

condition, we would recurse forever, as following the right subtrees gives us a loop when

we make the right subtree point to an ancestor. Such a function can look like this:

stree *rightmost_to(stree *t, struct node *n)

{

 if ((*t)->right == 0 || (*t)->right == n) {

 return t;

 } else {

 return rightmost_to(&(*t)->right, n);

 }

}

#define rightmost(t) rightmost_to(t, 0)

The rightmost() macro is there, so we can use rightmost() in deletion, without the

weird extra argument.

An in-order traversal that uses right thread pointers now looks like this:

void morris(stree *t)

{

 struct node *curr = *t;

 while (curr) {

 if (!curr->left) {

 // Visit

 printf("%d\n", curr->value);

 curr = curr->right;

 } else {

 stree rm = *rightmost_to(&curr->left, curr);

 assert(rm->right == 0 || rm->right == curr);

 if (rm->right == 0) {

 rm->right = curr;

 curr = curr->left;

 } else {

 // Visit

Chapter 12 Search Trees

403

 printf("%d\n", curr->value);

 rm->right = 0;

 curr = curr->right;

 }

 }

 }

}

If you don’t have a left subtree, you visit the node and go right. Otherwise, you figure

out if you can find yourself as the rightmost node on the left. If not, you update the

rightmost node’s right subtree to point to the current node, and you recurse to the left. If

yes, you restore the right subtree in the rightmost node by setting it to NULL, you visit the

current node, and then you go right.

The running time is proportional to the size of the tree. You search for the rightmost

node in the left subtree twice in every node (that has a left subtree), but the nodes you

run through in such searches do not overlap between different nodes, so each node is

maximally visited twice in such searches.

You don’t quite get the recursion in print_stree() here, although you visit the

nodes in the same order. It is simple to output the left parentheses, the commas, and the

node values, but when you return from the recursion by going through a right pointer,

you go up a number of recursive calls in one step, and you can’t see how many. You can

annotate the nodes with depth information and get print_stree() behavior, but I will

not bother here. Traversing the nodes in order suffices for most applications, and we

rarely need to know the exact tree structure.

�Freeing Nodes Without Recursion and Memory Allocation
For freeing the nodes, we can simplify the Morris traversal a bit. If we are deleting the

tree anyway, we are allowed to modify it (and we don’t need to worry about restoring

the tree during the traversal). So, when we process a node with a left subtree, we store

a pointer to the node in its rightmost subtree as before. We don’t need to check if the

rightmost is the node itself because it will never be. It will never be that, since right

before we recurse to the left, we remove the left subtree. We can modify the tree, since we

are deleting it, and that prevents us from attempting a second recursion to the left.

Chapter 12 Search Trees

404

void free_nodes(struct node *n)

{

 struct node *curr = n;

 while (curr) {

 if (!curr->left) {

 struct node *right = curr->right;

 free(curr);

 curr = right;

 } else {

 // Add pointer to rightmost so we can go back

 (*rightmost(&curr->left))->right = curr;

 // Recurse left, but make sure we never go left again

 struct node *left = curr->left; curr->left = 0;

 curr = left;

 }

 }

}

It simplifies the algorithm, and we save one rightmost search per node. And we

free the tree without using any additional memory, so freeing cannot fail due to stack

exhaustion, due to recession, or due to memory allocation errors, if we had used an

explicit stack.

�Adding a Parent Pointer
A problem with both embedding a stack in the nodes and with Morris traversal is that

we can at most run one traversal at a time—because we are using shared memory

embedded in the trees. With Morris traversal, we must also complete the traversal before

the tree is restored to a consistent state (with the embedded stack, it isn’t a problem as

we overwrite the stack in a new traversal). Concurrency is out of the question with these

strategies (and with many related strategies that rely on modifying trees for traversal).

If we are willing to add a pointer to the parent of each node (with NULL in the root),

then we can traverse a tree without modifying it and without dynamically allocating

memory while we do it. This does mean extending the node struct, of course, but for

many of the strategies for balancing trees, a parent pointer is necessary in any case, or at

least makes the code vastly faster, so it is not a high price to pay.

Chapter 12 Search Trees

405

It is trivial to add the pointer to the struct:

typedef struct node *stree;

struct node {

 int value;

 struct node *parent;

 struct node *left;

 struct node *right;

};

int allocated;

stree node(int value, stree parent,

 stree left, stree right)

{

 stree t = malloc(sizeof *t);

 if (t) *t = (struct node){

 .value = value, .parent = parent,

 .left = left, .right = right

 };

 return t;

}

#define leaf(V,P) node(V, P, 0, 0)

but then we also need to add it to the operations for modifying the tree. That means

that find_loc() must set the parent pointer. We can track the pointer going down the

recursion/loop, and if we have a parent pointer argument, passed by reference, we can

return it that way:

stree *find_loc(stree *t, int val, stree *p)

{

 while (*t && (*t)->value != val) {

 *p = *t;

 if (val < (*t)->value) t = &(*t)->left;

 else t = &(*t)->right;

 }

 return t;

}

Chapter 12 Search Trees

406

bool contains(stree *t, int val)

{

 stree parent = 0;

 return !! *find_loc(t, val, &parent);

}

bool insert(stree *t, int val)

{

 stree parent = 0;

 stree *target = find_loc(t, val, &parent);

 if (*target) return true; // already there

 else return !!(*target = leaf(val, parent));

}

We do the same with rightmost(), although there we do not set the initial value for

p, as we do not always call rightmost() with the root.

stree *rightmost(stree *t, stree *p)

{

 while ((*t)->right) {

 *p = *t;

 t = &(*t)->right;

 }

 return t;

}

When we delete, we get the parent with the first call to find_loc(), but if we are

in the second case, where the node to delete has both subtrees, we find the rightmost,

starting with the tree as the parent (it is the parent of its left child, after all):

void delete(stree *t, int val)

{

 stree parent = 0;

 stree *loc = find_loc(t, val, &parent);

Chapter 12 Search Trees

407

 if (*loc) {

 stree t = *loc;

 if (!(t->left && t->right)) {

 *loc = t->left ? t->left : t->right;

 // if there was a subtree, update its parent

 if (*loc) (*loc)->parent = parent;

 free(t);

 } else {

 parent = t; // t is t->left's parent

 stree *rm_ref = rightmost(&t->left, &parent);

 stree rm = *rm_ref;

 t->value = rm->value;

 *rm_ref = rm->left;

 // if there was a subtree, update its parent

 if (*rm_ref) (*rm_ref)->parent = parent;

 free(rm);

 }

 }

}

You can avoid the checks for empty children, before you set the parent pointer, by

having a dummy node for empty trees. You can share the same node with all empty trees

because you will never need to take the parent of an empty tree. You will just need to

replace the tests for NULL empty trees with tests for whether a tree points to the dummy.

With parent pointers in place, we can traverse the tree—and this time get a proper

“recursion” where we can add the right parentheses for printing the tree structure. We

can keep track of which direction we are moving, down or up the tree, and by comparing

the parent’s left child with a tree itself, we can determine if we are returning from the left

or right subtree, to determine whether we should now go right or keep returning.

#define left_child(t) \

 ((t)->parent && (t)->parent->left == (t))

Chapter 12 Search Trees

408

void parent_traverse(stree t)

{

 enum { DOWN, UP } state = DOWN;

 while (t) {

 switch (state) {

 case DOWN:

 // Recurse as far left as we can...

 while (t->left) { putchar('('); t = t->left; }

 // Emit the leaf we find there

 printf("(,%d,", t->value); // VISIT

 // Then go right, if we can, or up if we can't.

 if (t->right) { t = t->right; }

 else { putchar(')'); state = UP; }

 break;

 case UP:

 if (!t->parent) return; // back at the root; we're done

 if (left_child(t)) {

 // Returning from a left child, we emit the parent

 t = t->parent;

 printf(",%d,", t->value); // VISIT

 // Then we go right if we can't, or continue up

 // (t is already the parent) if we cannot.

 if (t->right) { t = t->right; state = DOWN; }

 else { putchar(')'); }

 } else {

 // Returning from a right child just means going up

 putchar(')'); t = t->parent;

 }

 break;

 }

 }

}

Chapter 12 Search Trees

409

Freeing the nodes in the same type of traversal is trivial. Do it when you return from a

node in the virtual recursion:

void parent_free(stree t)

{

 struct node *p;

 enum { DOWN, UP } state = DOWN;

 while (t) {

 switch (state) {

 case DOWN:

 while (t->left) { t = t->left; }

 if (t->right) { t = t->right; }

 else { state = UP; }

 break;

 case UP:

 if (!t->parent) { free(t); return; }

 if (left_child(t)) {

 p = t->parent; free(t); t = p;

 if (t->right)

 { t = t->right; state = DOWN; }

 } else {

 p = t->parent; free(t); t = p;

 }

 break;

 }

 }

}

There are plenty more algorithms for traversing trees, with or without modifying

them, and if you want to get more experience with trees and pointer manipulation, it is a

good place to start. For the book, however, it is time to move on to the next topic.

Chapter 12 Search Trees

411
© Thomas Mailund 2021
T. Mailund, Pointers in C Programming, https://doi.org/10.1007/978-1-4842-6927-5_13

CHAPTER 13

Function Pointers
We now leave data structures for a spell to talk about something new: pointers to

functions. Like pointers to data, pointers to functions give us a level of indirection, so we

can hold in a variable the address of an object rather than the object itself. Further, with

a pointer, the same variable can refer to different objects over time.

When you write a function, you write the return type before the function name, then

the parameters after the name, and finally the body. If you declare a function pointer

instead, you should put the name in parentheses and put a * before the name. Thus, this

defines a function, f, from void to void and a pointer, fp, to functions of that type:

void f(void) {}

void (*fp)(void) = f;

where, as for all non-const pointers, you can change the value a function pointer

points at:

void f2(void) {}

fp = f2;

For a more complex example, we can define a function, g, that returns double and

takes two arguments, the first of type int and the second of type float:

double g(int x, float y) { return x + y; }

A pointer to the same type looks like this:

double (*gp)(int, float) = g;

For both fp and gp, we assigned functions, f and g, to them. If we had data pointers,

we would have taken the address

fp = &f;

gp = &g;

https://doi.org/10.1007/978-1-4842-6927-5_13#DOI

412

and that is valid syntax as well. Like arrays, if you use an object as a pointer, it becomes a

pointer. So, you can assign a function to a function pointer without taking its address—

you automatically get its address in that case. Also, as with arrays, this doesn’t mean

that the address of a pointer to a function is the same as the pointer itself. While you can

assign both &f and f to fp, you cannot assign

void (*fp2)(void) = &fp;

Here, fp is a pointer to a function, and &fp is a pointer to a pointer to a function.

If you need a function pointer type alone, for example, if you are casting one function

type to another, you use normal cast notation: you put the type in parentheses. For the

function pointer type, you leave out the name after *, so a cast will look like

fp = (void (*)(void)) g;

The notation for function types can make complex expressions hard to read.

Consider this function:

void (* complex(int x, int (*p)(int)))(void)

{

 printf("%d\n", p(x));

 return f;
}

It is not at all clear that this part

void (* /*...*/)(void)

specifies the return type of a function—it returns a void to void function—but that is

what it says. The name of the function is complex and

(int x, int (*p)(int))

are its parameters. The parameter

int (*p)(int)

is an int to int function pointer. With expressions such as this, typedef is your friend,

and to typedef a function type, you put the type name where you would put the pointer

name:

typedef void (*void_fn)(void);

typedef int (*int_fn)(int);

Chapter 13 Function Pointers

413

void_fn simple(int x, int_fn p)

{

 printf("%d\n", p(x));

 return f;

}

The example also shows you how to call the function that a pointer points at: p(x). If

you have a function pointer, you use it the same way as if you had a function.

Function pointers are in a different category in the C standard, and there are slightly

different rules. Most importantly, you are not guaranteed that casting a function pointer

to void * and back will work. The POSIX standard does give you this guarantee, but if

your setup is merely compliant to standard C, it is not guaranteed. So don’t put pointers

to functions in data structures that hold void *; it isn’t safe. You are, however, ensured

that you can convert between any function pointers and back safely, so you can choose

any function pointer type to store pointers. If you call a function through a pointer of the

wrong type, however, you get undefined behavior.

�Function Pointers for High-Order Functions
It is, I think, easiest to learn how to use function pointers through a few examples, and

we start with the simplest situation where function pointers are needed: parameterizing

behavior in other functions. We use function arguments to parameterize the behavior of a

function, but when what we must parameterize is complex, like item comparison in qsort(),

we cannot easily do so through data. Rather, again like with qsort(), we can ask the caller to

provide a function that handles part of the computation our function must do. The qsort()

function doesn’t know how to compare elements, so the caller must provide a function that

can do that. With such a function in hand, qsort() can sort arrays of any type.

Functions that take function arguments are called higher-order functions, and C’s

support for such functions is rudimentary compared to many modern programming

languages. Still, with function pointers, we can implement some basic high-level

functions. For the following examples, I will use doubly linked lists from Chapter 11, and

to make the code more readable, I will use these two macros:

#define abort_append(x,v) \

 do { \

 if (!append((x), (v))) { \

Chapter 13 Function Pointers

414

 free_list(x); return 0; \

 } \

 } while(0)

#define for_each(var,x) \

 for (struct link *var = front(x); \

 var != x; var = var->next)

The first checks if an append() operation fails, and if it does, it will free the list and

return NULL. For all the following functions, that is the appropriate way to handle an

allocation error. The second macro just makes it easier to write a loop through a list. It is

the for-loop header we use when we want to iterate through all links in a list.

Now to our high-level functions. The first function we will write is map(). It takes a

list and a function as arguments, and it creates a new list constructed by evaluating the

function on all elements in the input list. So with a function such as this

int add2(int x) { return 2 + x; }

that adds two to its input, calling

y = map(x, add2);

will generate a list with all the numbers from x plus 2.

The map() function looks like this:

list map(list x, int (*f)(int))

{

 list y = new_list();

 if (!y) return 0;

 for_each(link, x) {

 abort_append(y, f(link->value));

 }

 return y;

}

The code is straightforward. We use the function pointer argument f as a function to

create new values f(link->value) to append to y.

Chapter 13 Function Pointers

415

For the next function, filter(), we want a function that takes a list and a
predicate—a function that returns a Boolean value—and gives us a new list with all the
elements that satisfied the predicate. The function is as simple to write as map() and can
look like this:

list filter(list x, bool (*p)(int))
{
 list y = new_list();
 if (!y) return 0;
 for_each(link, x) {
 if (p(link->value))
 abort_append(y, link->value);
 }
 return y;
}

With a function that tells us if a number is even:

bool is_even(int i) { return i % 2 == 0; }

calling

y = filter(x, is_even);

will give us the even numbers from x.
The fold() function is only slightly more complicated. When we call fold() with a

list x and function f, we want to iteratively apply f to the elements in x, with the result
of one call as the first argument to the next call of f. We need a way to specify what the
first argument should be the first time we call f, and we take the easy road and make it a
parameter of fold(). The implementation looks like this:

int fold(list x, int (*f)(int, int), int x0)
{
 list y = new_list();
 if (!y) return 0;
 int res = x0;
 for_each(link, x) {
 res = f(res, link->value);
 }
 return res;

}

Chapter 13 Function Pointers

416

The first call to f will be with f(x0,x1) where x1 is the first value in x. The next call
will be f(f(x0,x1),x2) where x2 is the second value in x, and so on.

Using fold(), we can, for example, implement functions for summing and
multiplying all elements in a list. We need to give fold() a function for adding two
numbers and then sum with an initial value of zero, and we need a function for
multiplying two numbers and then take the product with an initial value of one.

int add(int x, int y) { return x + y; }
int sum(list x) { return fold(x, add, 0); }

int mul(int x, int y) { return x * y; }
int prod(list x) { return fold(x, mul, 1); }

These are simple high-order functions, and it can get more involved. However, the
way that you use function pointer arguments doesn’t get more complicated than this.
You take a function pointer as an argument, and you use it as you would any other
function. Call it when you need the caller’s function to do what you cannot do on your
own. There is little beyond that to high-order functions in C.

�Callbacks
We use function pointers for much more than high-order functions. In event-driven
systems, such as graphical user interfaces, they are frequently used to decouple GUI
code from application logic. One design is to hook up GUI elements to so-called
callbacks, functions that the GUI framework will call when certain events happen.

Imagine a, somewhat simplistic, GUI framework where we have buttons, and buttons
can have different events. Without tying our code too much in with the GUI handling, we
want to be informed about the events that a given button experiences. The mechanism
for this will be a function pointer. Every button holds a function pointer, and they will
call that function for each event.

enum button_events {
 MOUSEDOWN, MOUSEUP,
 CLICKED, DBLCLICKED,
 // more...
};
struct button;
typedef void (*button_cb)(struct button *,

 enum button_events);

Chapter 13 Function Pointers

417

struct button {

 char *text; // what the button says

 // lots of gui stuff here

 button_cb cb_func; // <- the callback function

};

The application programmer can create a button and install a callback, and after

that, the framework will handle the GUI.

struct button *but = new_button("my button");

install_button_callback(but, my_callback);

In the callback, the application programmer can check which event happened and

handle it accordingly:

void my_callback(struct button *but,

 enum button_events event)

{

 switch (event) {

 case CLICKED:

 printf("button %s was clicked\n", but->text);

 break;

 default:

 // nothing

 break;

 }

}

In most frameworks, the mechanism is more involved, so events, GUI objects, and

callback functions are loosly coupled, but the principle is the same. If you want to be

informed about specific events, you install a callback, and that callback is called when

the event occurs. Callbacks aren’t restricted to GUIs either. In network programming,

you might have callbacks to notify you when a package arrives at a port, or in a

complicated workflow, you might want to hook in a bit of processing at specific steps in

the pipeline.1

1�When you have callbacks that manipulate data, rather than just listen to events, they are
sometimes called hooks. The way you use them is the same.

Chapter 13 Function Pointers

418

Callbacks (and hooks) are mostly used with frameworks, and not with simple

programs of the length I can include in this book, so I am sorry, but I cannot give you

a more realistic example than the one earlier. You will have to take my word for their

usefulness. But in the following examples, I will show you how we combine data and

function pointers in various ways with just as interesting results.

�Generic String Iterator
In Chapter 7, we wrote two iterators for finding words and integers in a text, and we

used macros to separate the generic code from the iterator-specific code. We needed

the macros because we had different functions for classifying individual characters as

numbers of part of a word, but by far the most of the code was generic, and the macros

helped us avoid duplicating it. In the source code, at least, it is, of course, repeated once

the macros are expanded.

Now, we are going to solve the same problem, but with function pointers to handle

the varying parts of the code. We built our iterators on two functions, one for finding the

next character of a class and one for skipping past characters of the class. For words, for

example, we had

char *find_word(char *x)

{

 while (*x && !isalpha(*x))

 x++;

 return x;

}

char *skip_word(char *x)

{

 while (*x && isalpha(*x))

 x++;

 return x;

}

With these two functions, the first instance in a string x would be at y = find_

word(x); and the following instances at y = find_word(skip_word(y));. The variable

part is the character class, and we used macros to substitute different functions there,

otherwise generating the same code.

Chapter 13 Function Pointers

419

Now, let us use a function pointer instead. Functions such as isalpha() have type

int (*)(int), that is, they are integer to integer functions. We could easily update the

preceding functions to take such a function as an argument:

char *find(int (*char_class)(int), char *x)

{

 while (*x && !char_class(*x))

 x++;

 return x;

}

char *skip(int (*char_class)(int), char *x)

{

 while (*x && char_class(*x))

 x++;

 return x;

}

To get an iterator, we can collect a character class function and a character pointer

to the current location in a struct. We can initialize it with a function and a string and

return the first occurrence (or NULL if there isn’t one).

typedef struct {

 char *x;

 int (*char_class)(int);

} find_skip_iter;

#define NULLIFY(x) ((*x) ? (x) : 0)

char *init_iter(find_skip_iter *iter, char *x,

 int (*char_class)(int))

{

 iter->char_class = char_class;

 iter->x = find(iter->char_class, x);

 return NULLIFY(iter->x);

}

Chapter 13 Function Pointers

420

#define init_word_iter(itr, x) \

 init_iter((itr),(x), isalpha)

#define init_int_iter(itr, x) \

 init_iter((itr),(x), isnumber)

The macros give us an easy way to initialize an iterator over words and numbers.

Each time we go for the next occurrence, we do a skip followed by a find:

char *next(find_skip_iter *iter)

{

 iter->x = skip(iter->char_class, iter->x);

 iter->x = find(iter->char_class, iter->x);

 return NULLIFY(iter->x);

}

In action, we can use the iterators like this:

int main(void)

{

 char *x = "123 sss 321 xxx 123";

 find_skip_iter itr;

 for (char *y = init_word_iter(&itr, x);

 y; y = next(&itr)) {

 printf("%s\n", y);

 }

 for (char *y = init_int_iter(&itr, x);

 y; y = next(&itr)) {

 printf("%s\n", y);

 }

 return 0;

}

The control flow in this example is different from the high-order functions. We do not

use a function pointer to parameterize the behavior within one function call. Instead,

we parameterize the behavior of an object, the iterator, through function pointers. When

we need to get the next item from the iterator, we use the saved function pointers to get

there. Other than that, the use of function pointers to parameterize behavior is similar.

Chapter 13 Function Pointers

421

�Function Pointers for Abstract Data Structures
Abstract data structures are data structures defined by their operations, but not their

specific implementation. A stack, for example, is something you can push to and pop

from, and you can implement it in various ways. When we develop algorithms, abstract

data structures are a conceptual tool we use, but when we implement them, of course,

we need a concrete representation. Using a concrete type, however, makes it difficult to

change the choice later, if a better implementation comes along. It also makes it hard to

experiment with different implementation choices because each change requires that we

update all the code that uses the data structure. There are times where we wish to keep

the interface to a data structure abstract, and with function pointers, we can do so.

Let us, as an example, take a stack. With some appropriate definition of the type

stack, and the elements we put in it, elem, the interface to a stack could look like this:

typedef ??? stack;

typedef ??? elem;

stack new_stack (void);

bool empty_stack (stack);

elem statck_top (stack);

bool stack_push (stack, elem);

elem stack_pop (stack);

void free_stack (stack);

An easy way to hide the underlying implementation is to make stack some opaque

type, like a void *, or a pointer to a struct we don’t reveal to the user. A stack of

integers, for example, could define the types as

typedef struct stack *stack;

typedef int elem;

Then, we would be free to implement the struct stack however we want, and

the user could only access it through the functions declared through the preceding

prototypes. That would work flawlessly if our application only ever needed one

implementation of a stack, but it would fail if we used different implementations in

different parts of the program. We might have hidden the implementation details, but

the stack functions are linker objects, and we can only have one function with any given

name at a time.

Chapter 13 Function Pointers

422

There are different ways to resolve the problem, but since the chapter is about
function pointers, we are going for a solution using pointers. We can wrap the stack
operations up in a structure that holds pointers to the different operations. They will
operate on an implementation-specific stack, which we might as well represent as a
void pointer. Then we are going to wrap everything up in a stack struct that ties the
interface and implementation together. The structure of operations, defining a concrete
implementation of the stack interface, looks like this:

typedef void * impl_stack;
typedef int elem;

typedef struct {
 impl_stack (*new_stack) (void);
 bool (*empty_stack) (impl_stack);
 elem (*top) (impl_stack);
 bool (*push) (impl_stack, elem);
 elem (*pop) (impl_stack);
 void (*free_stack) (impl_stack);
} stack_type;

It is function pointers with the interface from the original prototypes, except that
we use the impl_stack, a void *, as the stack type. A stack is going to be a pointer to
a struct that holds a pointer to the implementation stack type and a pointer to the
functions that implement the stack:

struct stack {
 impl_stack impl_stack;
 stack_type *type;
};
typedef struct stack * stack;

Now, we can implement the original stack interface, operating on a stack type, but
where each operation delegates to the function pointed to in the stack_type structure.
The only difference to the preceding prototypes is that the new_stack() function takes
an argument that is the stack_type:

stack new_stack(stack_type *type)
{
 void *impl_stack = type->new_stack();

 stack stack = malloc(sizeof *stack);

Chapter 13 Function Pointers

423

 if (!impl_stack || !stack) goto error;

 stack->impl_stack = impl_stack;

 stack->type = type;

 return stack;

error:

 free(stack);

 if (impl_stack)

 type->free_stack(impl_stack);

 return 0;

}

When we create a stack, we create the underlying stack representation using the

function from the type, then we wrap up that implementation stack and the type in the

stack object.

The remaining functions get the implementation function from the stack_type

pointer and call them. It is a simple forwarding call.

bool empty_stack(stack stack)

{

 return stack->type->empty_stack(stack->impl_stack);

}

elem stack_top(stack stack)

{

 return stack->type->top(stack->impl_stack);

}

bool stack_push(stack stack, elem elem)

{

 return stack->type->push(stack->impl_stack, elem);

}

elem stack_pop(stack stack)

{

 return stack->type->pop(stack->impl_stack);

}

Chapter 13 Function Pointers

424

void free_stack(stack stack)

{

 stack->type->free_stack(stack->impl_stack);

 free(stack);

}

If you want to implement a concrete stack, you must provide each of the functions

for the stack_type structure. An implementation using the linked lists from Chapter 11

could look like this:

impl_stack list_stack_new(void)

{

 return new_list();

}

bool list_stack_empty(impl_stack stack)

{

 return is_empty((list)stack);

}

elem list_stack_top(impl_stack stack)

{

 return front((list)stack)->value;

}

bool list_stack_push(impl_stack stack, elem elem)

{

 return prepend(stack, elem);

}

elem list_stack_pop(impl_stack stack)

{

 elem elem = front((list)stack)->value;

 delete_link(front((list)stack));

 return elem;

}

Chapter 13 Function Pointers

425

void list_stack_free(impl_stack stack)

{

 free_list(stack);

}

stack_type list_stack = {

 .new_stack = list_stack_new,

 .empty_stack = list_stack_empty,

 .top = list_stack_top,

 .push = list_stack_push,

 .pop = list_stack_pop,

 .free_stack = list_stack_free

};

If you want to use the dynamic arrays from Chapter 9, you could implement a stack

like this:

impl_stack da_stack_new(void)

{

 struct dynarray *da = malloc(sizeof *da);
 if (!da) return 0;
 if (!da_init(da, 1, 0)) {
 free(da);

 return 0;
 }

 return da;
}

bool da_stack_empty(impl_stack stack)

{

 return ((struct dynarray *)stack)->used == 0;
}

elem da_stack_top(impl_stack stack)

{

 struct dynarray *da = stack;
 assert(da->used > 0);

 return da->data[da->used - 1];

}

Chapter 13 Function Pointers

426

bool da_stack_push(impl_stack stack, elem elem)

{

 return da_append(stack, elem);

}

elem da_stack_pop(impl_stack stack)

{

 struct dynarray *da = stack;

 assert(da->used > 0);

 return da->data[--(da->used)];

}

void da_stack_free(impl_stack stack)

{

 da_dealloc(stack);

 free(stack);

}

stack_type da_stack = {

 .new_stack = da_stack_new,

 .empty_stack = da_stack_empty,

 .top = da_stack_top,

 .push = da_stack_push,

 .pop = da_stack_pop,

 .free_stack = da_stack_free

};

You can use both types of stacks, plus any other implementation you might write,

in the same code. Whenever you have an implementation of all the operations, you

can collect them in an instance of stack_type and create a new stack from them. After

that, any operation you apply to the stack will call the correct function for the concrete

implementation. After the stack creation, there isn’t any difference in how you use different

concrete stacks:

int main(void)

{

 // Try with list stack

 stack stack = new_stack(&list_stack);

Chapter 13 Function Pointers

427

 for (int i = 0; i < 5; i++) {

 stack_push(stack, i);

 }

 while (!empty_stack(stack)) {

 int x = stack_pop(stack);

 printf("%d\n", x);

 }

 free_stack(stack);

 // Try with dynamic array

 stack = new_stack(&da_stack);

 for (int i = 0; i < 5; i++) {

 stack_push(stack, i);

 }

 while (!empty_stack(stack)) {

 int x = stack_pop(stack);

 printf("%d\n", x);

 }

 free_stack(stack);

 return 0;

}

Function pointers used this way are excellent tools for separating an interface from

an implementation. However, if you use them for writing data structures, where runtime

performance is important, then you must be careful. It is slower to call a function

through a pointer than to call the function directly. There is the obvious overhead of

having to load the value of the pointer variable before you can call the function, but that

is a small overhead. More critical is that the computer’s cache and branch prediction

doesn’t function well when calling functions at addresses you first need to compute.

This can slow down a function call dramatically. For functions you call often, and where

performance is critical, you don’t want to call indirectly if you can avoid it.

In many cases, calling one operation on an abstract data structure is not time

critical. It is important that the operation is efficient, but that relies on the code after

we have dispatched the operation to the correct implementation function. The indirect

call overhead is not an issue. But in a tight inner loop of an algorithm, you are likely

Chapter 13 Function Pointers

428

better served with a tighter coupling between the concrete implementation of the

data structure and the algorithm, and the corresponding performance gain, than

with keeping the data structure abstract. The correct choice, if there is such a beast, is

application dependent.

�Function Pointers for Polymorphic Data Structures
We can take the idea of combining data and function pointers one step further and use

it to implement rudimentary object-oriented programming with dynamic dispatch. It is

the same idea as for abstract data structures, but we will need to allow for derived objects

to carry more data than the types they inherit from, and we must allow derived classes

to have more functions than their base classes. Meanwhile, any object of a derived class

must have a form where we can cast it to a base class and use it as such.

To meet these requirements, we can exploit that the C standard guarantees that

the first object you put in a struct goes at the first memory address of instances of that

struct. If you have a pointer to an instance of the struct, then you can safely cast it to a

pointer to the first element. This means that if you nest structs, you can cast your way

into the nesting. For example, with

struct A {
 int a;

};

struct B {
 struct A a;
 int b;

};

struct C {
 struct B b;
 int c;

};

you can access members of a struct C as if they were members of the nested struct B

or the nested struct A in the struct B.

struct C *x = /* some allocation */;
assert(((B*)x)->b == x->b.b);

assert(((A*)x)->a == x->b.a.a);

Chapter 13 Function Pointers

429

Anywhere you have a function that works with pointers to struct A or struct B, you

can call the function with a pointer to an instance of struct C. (They have to be pointers,

of course, because otherwise you copy members, and you will only copy members of the

type the function expects).

The C standard promises a little more about the memory layout of structs, and you

wouldn’t have to nest them here. If the structs share a prefix of members, it also works.

struct A {

 int a;

};

struct B {

 int a;

 int b;

};

struct C {

 int a;

 int b;

 int c;

};

If you want to use one struct as another, though, it is easier to nest them.

�Single Inheritance Objects and Classes
We can use this to create classes and objects (or instances) in an object-oriented

programming sense. It is close to how C++ was initially implemented as a preprocessor

to C. Use nested structs for objects, so derived objects contain the data their base

cases have. For classes, have a struct for virtual functions (or functions with dynamic

dispatch, or whatever you want to call them), and use nested structs for derived classes.

Since we need to be able to both extend instances, so objects of derived classes can

carry more data than the base classes, and extend classes, so derived classes can have

more virtual functions than base classes, we need two parallel hierarchies of nested

structs. Obviously, we cannot put both of these at the top of a struct, so the casting

trick cannot work that way. Instead, we make objects and classes separate structs. Each

object will need to know its class, so objects will have a pointer to their class struct.

Chapter 13 Function Pointers

430

This also saves some memory, because each object doesn’t have to carry with it all the

function pointers; they just need a single pointer through which they can find them.

When we need to apply a polymorphic function on an object, we can get the struct of

function pointers from the object and call the appropriate function there.

We can define a class pointer as void *, so it can point to any structure, and define

the most basic object as something that has such a pointer. I have also defined a macro,

basetype(), for the casting, just to make it explicit what we are doing. Then I have a

macro, vtbl, that gets the virtual function table, cast to a class type.

typedef void * cls;
typedef struct obj { cls *cls; } obj;

#define basetype(x, base) ((base *)x)
#define vtbl(inst, base) \
 basetype(((obj *)inst)->cls, base)

You can make the basetype() more type-safe by going into the nested classes rather

than casting, but it puts constraints on how the structs must be nested, and if you

modify the type hierarchy above a class, you would need to update the code. The cast

does what it is supposed to do if you are careful with it.

To call a polymorphic function, f, defined in class A_cls, you need to look it up in an

object’s vtbl as vtbl(x,A_cls)->f. You will probably want to do that by wrapping the

call in a function, for example:

int f(A *x, double d) { return vtbl(x,A_cls)->f(d); }

Classes must be allocated and initialized before we can use them. There’s a function

and macro for that:

void *alloc_cls(size_t cls_size)

{

 cls *cls = malloc(cls_size);

 if (!cls) abort(); // error handling
 return cls;
}

#define INIT_CLS(p, init) \
 do { \
 if (!p) { \
 p = alloc_cls(sizeof *p); \

Chapter 13 Function Pointers

431

 init(p); \
 } \
} while(0)

The INIT_CLS() gets a pointer to the class, which I expect is a global variable, initially

NULL. If the class hasn’t been initialized yet, we allocate it and use the init function

provided to initialize it.

For objects, we can use

void *alloc_obj(size_t obj_size, cls cls)

{

 obj *obj = malloc(obj_size);

 if (!obj) abort(); // error handling
 obj->cls = cls;

 return obj;
}

#define NEW_OBJ(p, cls) alloc_obj(sizeof *p, cls)

The NEW_OBJ() macro creates an object and sets its class. There is not an

initialization function here because I expect that initializers will need arguments, so we

cannot handle that generically. The same might be true for classes, but if that day arises,

we can deal with it then.

void print_expr(EXP e) { vtbl(e, base_expr_cls)->print(e); }

double eval_expr(EXP e) { return vtbl(e, base_expr_cls)->eval(e); }

�A Hierarchy of Expression Classes
For a concrete example, we can have generic arithmetic expressions. We can define their

main interface as having a print() and an eval() function.

// Generic expression type

typedef struct base_expr *EXP;

// Base class, class definition

typedef struct base_expr_cls {
 void (*print)(EXP);

 double (*eval) (EXP);

} base_expr_cls;

Chapter 13 Function Pointers

432

The functions are generic, so the implementation dispatches to the table in the class:

void print(EXP e) { vtbl(e, base_expr_cls)->print(e); }

double eval (EXP e) { return vtbl(e, base_expr_cls)->eval(e); }

When we initialize the class, we don’t put any methods in there. They are abstract.

void init_base_expr_cls(base_expr_cls *cls)

{

 cls->print = 0; // abstract method

 cls->eval = 0; // abstract method

}

There is nothing in instances of the base class (except the nested obj needed for the

class pointer).

// Base class, object definition

typedef struct base_expr { obj obj; } base_expr;

// Base class, methods (init does nothing)

void init_base_expr(base_expr *inst) {}

A concrete expression type is one that merely holds a value. It can look like this:

// Value expressions

typedef struct value_expr_cls {

 base_expr_cls base_expr_cls;

} value_expr_cls;

typedef struct value_expr {

 base_expr base_expr;

 double value;

} value_expr;

The class struct has the base class struct as its first (and only) member, and the

object struct has the base expression object struct as its first member and the value the

class should hold.

This is not an abstract class, but one we can instantiate, so we need a place to put the

class struct, and we define a pointer for it:

// Concrete class, so must have a struct

value_expr_cls *VALUE_EXPR_CLS = 0; // must be initialised

Chapter 13 Function Pointers

433

We will initialize it later.

The class should define the print() and eval() functions, so we write functions for

that, and in the function that initializes the class, we insert them in the nested/base class

struct.

void value_expr_print(EXP val)

{

 printf("%.3f", ((value_expr *)val)->value);

}

double value_expr_eval(EXP val)

{

 return ((value_expr *)val)->value;

}

void init_value_expr_cls(value_expr_cls *cls)

{

 init_base_expr_cls(basetype(cls, base_expr_cls));

 // override virtual functions

 base_expr_cls *base_expr = basetype(cls, base_expr_cls);

 base_expr->print = value_expr_print;

 base_expr->eval = value_expr_eval;

}

For initializing objects of the type, we need a function that calls the base initializer

and sets the value:

void init_value_expr(value_expr *val, double value)

{

 init_base_expr(basetype(val, base_expr));

 val->value = value;

}

We want a function that creates objects as well, a so-called constructor, and it can

look like this:

EXP value(double value)

{

 INIT_CLS(VALUE_EXPR_CLS, init_value_expr_cls);

Chapter 13 Function Pointers

434

 value_expr *val = NEW_OBJ(val, VALUE_EXPR_CLS);

 init_value_expr(val, value);

 return (EXP)val;

}

It initializes the class, if it isn’t already created, then it allocates a new object,

initializes it, and returns it.

We want binary operators, and we can define a class for that. I will write one that

implements the print() virtual method, but not the eval() method; we will add eval()

in subclasses. The implementation can look like this:

typedef struct binexpr_cls {

 base_expr_cls base_expr_cls;

} binexpr_cls;

typedef struct binexpr {

 base_expr base_expr;

 char symb; EXP left, right;

} binexpr;

void print_binexpr(EXP exp)

{

 binexpr *binop = (binexpr *)exp;

 putchar('('); print(binop->left); putchar(')');

 putchar(binop->symb);

 putchar('('); print(binop->right); putchar(')');

}

void init_binexpr_cls(binexpr_cls *cls)

{

 init_base_expr_cls(basetype(cls, base_expr_cls));

 base_expr_cls *base_expr = basetype(cls, base_expr_cls);

 base_expr->print = print_binexpr;

}

void init_binexpr(binexpr *binop, char symb,

 EXP left, EXP right)

{

 init_base_expr(basetype(binop, base_expr));

Chapter 13 Function Pointers

435

 binop->symb = symb;

 binop->left = left;

 binop->right = right;

}

It follows the pattern we saw for values, except that we do not have a pointer for the

class or a constructor because we are not supposed to create instances of this class. It

doesn’t define eval(), so our program would crash if we did and then tried to evaluate

an expression. In the following, you can read the implementation of an addition and

substitution class:

// Addition

typedef struct add_expr_cls {

 binexpr_cls binexpr_cls;

} add_expr_cls;

typedef struct add_expr {

 binexpr binexpr;

} add_expr;

add_expr_cls *ADD_EXPR_CLS = 0;

double eval_add_expr(EXP expr)

{

 binexpr *base = basetype(expr, binexpr);

 return eval(base->left) + eval(base->right);

}

void init_add_expr_cls(add_expr_cls *cls)

{

 init_binexpr_cls(basetype(cls, binexpr_cls));

 base_expr_cls *base_expr = basetype(cls, base_expr_cls);

 base_expr->eval = eval_add_expr;

}

void init_add_expr(add_expr *expr, EXP left, EXP right)

{

 init_binexpr(basetype(expr, binexpr), '+', left, right);

}

Chapter 13 Function Pointers

436

// Constructor

EXP add(EXP left, EXP right)

{

 INIT_CLS(ADD_EXPR_CLS, init_add_expr_cls);

 add_expr *expr = NEW_OBJ(expr, ADD_EXPR_CLS);

 init_add_expr(expr, left, right);

 return (EXP)expr;

}

// Subtraction

typedef struct sub_expr_cls {

 binexpr_cls binexpr_cls;

} sub_expr_cls;

typedef struct sub_expr {

 binexpr binexpr;

} sub_expr;

sub_expr_cls *SUB_EXPR_CLS = 0;

double eval_sub_expr(EXP expr)

{

 binexpr *base = basetype(expr, binexpr);

 return eval(base->left) - eval(base->right);

}

void init_sub_expr_cls(sub_expr_cls *cls)

{

 init_binexpr_cls(basetype(cls, binexpr_cls));

 base_expr_cls *base_expr = basetype(cls, base_expr_cls);

 base_expr->eval = eval_sub_expr;

}

void init_sub_expr(add_expr *expr, EXP left, EXP right)

{

 init_binexpr(basetype(expr, binexpr), '-', left, right);

}

// Constructor

Chapter 13 Function Pointers

437

EXP sub(EXP left, EXP right)

{

 INIT_CLS(SUB_EXPR_CLS, init_sub_expr_cls);

 add_expr *expr = NEW_OBJ(expr, SUB_EXPR_CLS);

 init_sub_expr(expr, left, right);

 return (EXP)expr;

}

The code, again, follows the same pattern as we saw for the value_expr class.

The last example I will give is an expression that represents a variable. It is an

expression with a named variable, but where we can bind values to the variable and

unbind them again. We will make these two operations virtual functions (i.e., functions

with a dynamic dispatch through the class) to see how that is done. I cannot think of a

situation where we wouldn’t use plain old functions for that, but it is an example, so go

with it. It is what you are going to get.

The class will have a bind() and an unbind() virtual function, and instances will

have the name of the variable and the value we have bound to it.

// Variables

typedef struct var_expr *VAR;

typedef struct var_expr_cls {

 base_expr_cls base_expr_cls;

 void (*bind) (VAR var, EXP val);

 void (*unbind)(VAR var);

} var_expr_cls;

typedef struct var_expr {

 base_expr base_expr;

 char const *name;

 double value;

} var_expr;

// new virtual functions

void bind(VAR var, EXP e) { vtbl(var, var_expr_cls)->bind(var, e); }

void unbind(VAR var) { vtbl(var, var_expr_cls)->unbind(var); }

Chapter 13 Function Pointers

438

The implementation we give the bind() function will evaluate the second argument

and put it in the value of the first. For unbind(), we set value to NAN (not a number,

defined in <math.h>).

// implementations of new virtual functions

void var_expr_bind (VAR var, EXP e) { var->value = eval(e); }

void var_expr_unbind(VAR var) { var->value = NAN; }

From here on, we follow the pattern we have seen already. It is a concrete class, so

we have a pointer for it, we have code for initializing the class and the instances, and we

have a constructor for the type.

var_expr_cls *VAR_EXPR_CLS = 0;

// overriding virtual functions

void var_expr_print(EXP expr)

{

 VAR var = (VAR)expr;

 if (isnan(var->value)) { // isnan from <math.h>

 printf("%s", var->name);

 } else {

 printf("%f", var->value);

 }

}

double var_expr_eval(EXP expr)

{

 VAR var = (VAR)expr;

 return var->value;

}

void init_var_expr_cls(var_expr_cls *cls)

{

 init_base_expr_cls(basetype(cls, base_expr_cls));

 // override virtual functions

 base_expr_cls *base_expr = basetype(cls, base_expr_cls);

 base_expr->print = var_expr_print;

 base_expr->eval = var_expr_eval;

Chapter 13 Function Pointers

439

 // new virtual functions

 cls->bind = var_expr_bind;

 cls->unbind = var_expr_unbind;

}

void init_var_expr(var_expr *var, char const *name)

{

 init_base_expr(basetype(var, base_expr));

 var->name = name;

 var->value = NAN; // NAN from <math.h>

}

// constructor

VAR var(char const *name)

{

 INIT_CLS(VAR_EXPR_CLS, init_var_expr_cls);

 VAR var = NEW_OBJ(var, VAR_EXPR_CLS);

 init_var_expr(var, name);

 return var;

}

You can try it out in action with code like this:

int main(void)

{

 VAR x = var("x");

 EXP expr = add(value(1.0), sub((EXP)x, value(2.0)));

 // prints 'x' for x and evaluates to nan

 print(expr); putchar('\n');

 printf("evaluates to %f\n", eval(expr));

 // set x to 42

 bind(x, add(value(40.0), value(2.0)));

 // now prints 42 for x ane evaluates to 41

 print(expr); putchar('\n');

 printf("evaluates to %f\n", eval(expr));

 return 0;

}

Chapter 13 Function Pointers

440

We create one variable, and we keep track of it, so we can bind it. Then we have

the expression 1.0 + (x - 2.0), written as expressions. If we print it, the output

shows x for the variable; if we evaluate it, we get nan because we use a nan from x in the

computation. Give x a value, and this changes.

�Generating Functions
If we have function pointers, could we point one at a random memory address and start

executing the code there? Yes and no. In the good old days, before anyone worried about

security, you could write machine code to a buffer, assign the buffer address to a function

pointer, and call the function. These days, things are more complicated. That being said,

you can usually still do it, although not in any portable way. In this last section of the

chapter, I will give you an idea about how you can create and run code, but it will only

be a taste of it. There is much more to it, but as we consider architecture and platform-

dependent code, I will not dig too deep into the topic.

Typical memory protection in a modern operating system will have protection bits on

memory locations, which allows you any combination of reading, writing, and executing.

The code your compiler generated for you sits in memory that can be read and executed.

The memory on our stack and that we allocate from the heap can be read and written

to. But a rule of thumb is that you should not have memory that you can both write to

and execute (and some operating systems enforce this rule). To generate code, we need

memory that we can write to, and to execute it, we must change the protection bits so

we can read and execute instead. There will be a system call in your operating system

that lets you change the protection bits, but the resolution of protection is not individual

bytes. Instead, it is so-called pages, of whatever size the hardware and/or operating

system specifies. If you have a memory address that falls on the border of a page, a page’s

memory alignment, you can change the memory protection bit; otherwise, you cannot.

With malloc(), we do not necessarily get correctly aligned memory, but we could use

aligned_alloc() and implement a function such as this for getting a block of memory

we can change permissions for:

#include <unistd.h>

void *alloc_code_block(size_t size)

{

 long pagesize = sysconf(_SC_PAGE_SIZE);

Chapter 13 Function Pointers

441

 // with aligned alloc, the size must be a

 // multiple of align size

 size_t pages = (size + pagesize - 1) / pagesize;

 return aligned_alloc(pagesize, pages * pagesize);

}

We get the size of a page using the sysconf() function (specified in the POSIX

standard). Then we round up the memory we need because aligned_alloc() requires

that we allocate multiples of the alignment value and get an aligned chunk of memory.

Alignment alone might not be enough, though. Various other constraints vary

from system to system, so more typical is using the (POSIX) mmap() function. It is a

POSIX standard function, but it is not so standard that you can get what you want,

unfortunately. Some systems have further requirements to what we can change

protection bits on, but on macOS and the Linux systems I am familiar with, this function

will work for allocation:

#include <sys/mman.h>

// Allocate page-aligned memory with mmap()

void *alloc_code_block(size_t size)

{

 // We want a read/write block

 int protection = PROT_READ | PROT_WRITE;

 // MAP_ANONYMOUS not POSIX but necessary on some systems

 // e.g. SELinux

 int flags = MAP_ANONYMOUS | MAP_PRIVATE;

 char *buf = mmap(0, size, protection, flags, -1, 0);

 return (buf != MAP_FAILED) ? buf : 0;

}

On a Windows machine, you want to look at the VirtualAlloc() function instead.

This gives us a correctly allocated memory block that we can write to. Once we have

generated our code, we need to change the protection bits, and we can do that with

mprotect(), another POSIX function:

void *set_exec_prot(void *buf, size_t size)

Chapter 13 Function Pointers

442

{

 // Change to a read/exec block

 int res = mprotect(buf, size, PROT_READ | PROT_EXEC);

 if (res == -1) {

 // munmap can fail, but there is nothing we

 // can do about it here...

 munmap(buf, size);

 return 0;

 }

 return buf;

}

The munmap() function is the call we have to use to deallocate memory. We didn’t

allocate with malloc() or its cousins, so free() is not an option. In any case, we set the

protection bits to PROT_READ and PROT_EXEC, so we can now execute code in the buffer.

To free a code buffer, once we are done, we use

void free_code_block(void *buf, size_t size)

{

 // munmap can fail, but there is nothing we

 // can do about it here...

 munmap(buf, size);

}

On Windows, you want VirtualProtect() to change permissions and

VirtualFree() to free the buffer.

With these three functions, we can allocate memory for code, put code in the

buffer and make it executable, and free the buffer once we are done with it. You need

to generate raw machine code into the buffer, of course, which is tedious, but you can

always write a library to help you. A simple example of code generation could look like

this:

int main(void)

{

 // Adds two to its input and returns

 unsigned char code[] = {

 0x8d, 0x47, 0x02, // lea eax,[rdi+0x2]

Chapter 13 Function Pointers

443

 0xc3 // ret

 };

 /*

 Solaris, Linux, FreeBSD and macOS uses the System V AMD64 ABI

 where the first integer/pointer argument comes in register rdi.

 On windows, it would come in rcx.

 If you are there, change "rdi+0x2" to "rcx+0x2".

 */

 // Raw memory...

 void *code_block = alloc_code_block(sizeof code);

 if (!code_block) abort();

 memcpy(code_block, code, sizeof code);

 code_block = set_exec_prot(code_block, sizeof code);

 if (!code_block) abort();

 int (*f)(int) = (int (*)(int))code_block;

 printf("%d\n", f(3));

 free_code_block(code_block, sizeof code);

 return 0;

}

The code is for x64 chips and adds 2 to the function’s first parameter and returns

the result, and it will run on Solaris, Linux, FreeBSD, and macOS (and any system that

uses the System V AMD64 ABI calling convention). It will not run on Windows because

although Windows run on the same hardware, the convention for where functions get

their input differs. On Windows, the input is in register rcx instead of rdi. Sorry, it is

hard to write portable code when you write directly to the machine.

There might be another issue between writing your code to memory and executing

it, although not on my architecture. The instruction and the data cache/bus might not

be the same. So, you could be writing code to memory as data and then executing code

at the same addresses, but getting old cached data. If that is the case, you need to flush

the caches, and your compiler or system will have ways of doing that—not portable ways,

though.

Chapter 13 Function Pointers

444

�Tagged Pointers
Since we have left any attempts at writing portable code behind us now, I feel that I can

show you a trick that isn’t exactly portable, but that you can often use anyway. We are

writing code for a machine where pointers are simple 64-bit integers, and we can treat

them as such. The C standard does not guarantee that, but practically all architectures

will let us manipulate pointers as integers, and we can exploit that if we are brave

enough.

There is a trick used by virtual machines that exploit this. If we have data that we

know has stricter alignment rules than char, that is, that cannot lie on all possible

addresses, then we have bits in pointers to them that will always be zero. If integers,

for example, align at offset 4, then the two lower bits must always be zero. That means

that we can use those bits for something else, as long as we remember to set them back

to zero before we use them as pointers. Imagine that we have a virtual machine that

represents integers as some structure that can have arbitrary size, perhaps encoded as

arrays of int. That means that general integers are int *. But smaller integers can fit into

a pointer, so we could put them there if we don’t need to put them on the heap. If bit 0 is

always 0 for pointers, we could set it to 1 to indicate that we have put the actual integer in

the pointer instead. For a small integer, we shift it one bit up and set the lowest bit to one,

and that is their representation. For general integers, we have a pointer. To extract an

integer, check the lowest bit. If it is 0, dereference; if it is 1, shift the remaining bits down.

You get one bit less to represent small integers, but you can save all integers in the same

(integer pointer) structure:

#include <stdio.h>

#define smallint(i) (int *)((i) << 1 | 1)

#define get_smallint(p) ((int)(p) >> 1)

#define is_smallint(p) ((int)(p) & 1)

#define get_int(p) \

 (is_smallint(p) ? get_smallint(p) : (*(p)))

int main(void)

{

 int *p1 = smallint(1);

 int *p2 = smallint(2);

 printf("%d + %d = %d\n",

Chapter 13 Function Pointers

445

 get_int(p1), get_int(p2),

 get_int(p1) + get_int(p2));

 int i3 = 3;

 p2 = &i3;

 printf("%d + %d = %d\n",

 get_int(p1), get_int(p2),

 get_int(p1) + get_int(p2));

 return 0;

}

We could use that to encode the size of the blocks of memory we allocated when we

generate code. We can allocate whole pages at a time, which we would have to anyway

because the granularity of protection bits is whole pages, and encode how many pages

we allocated in the lower bits of pointers. Then we pack those into what I will call a JIT

pointer (for just-in-time compilation, the term usually used when we generate code on

the fly). If page sizes are 4k (they are on my machine), then we have 12 bits for the size.

With appropriate masking, we can pack both the pointer and the size into one pointer.

The following jit_ptr() macro packs the size and pointer together, using simple binary

or. The jit_pages() macro masks out the lower 12 bits to give us the size, and the

jit_func() macro masks away the size bits. The macro uses a compiler extension, __

typeof__(), for type-casting. We are no longer writing portable code, so I will use what

my compiler provides. If you don’t have __typeof__() or something similar, you have to

cast where you use the macro.

// You can get PAGESIZE from POSIX sysconf(_SC_PAGESIZE);

// from sysconf() from <unistd.h>

#define PAGESIZE 4P96

// You can get the number of free bits from

// POSIX ffs() from <strings.h> as ffs(page_size) - 1;

#define CODE_SIZE_BITS 12

#define CODE_SIZE_MASK ((1ull << CODE_SIZE_BITS) - 1)

#define MAX_CODE_PAGES CODE_SIZE_MASK

#define CODE_PTR_MASK (~CODE_SIZE_MASK)

#include <stdint.h>

Chapter 13 Function Pointers

446

#define jit_ptr(f,s) (void *)((uint64_t)f | s)

#define jit_pages(p) ((uint64_t)p & CODE_SIZE_MASK)

// using compiler extension __typeof__ for cast

#define jit_func(p) ((__typeof__(p))((uint64_t)p & CODE_PTR_MASK))

void jit_free_void(void *p)

{

 free_code_block((void *)jit_func(p), jit_pages(p));

}

// to avoid function/void pointer warnings

#define jit_free(p) jit_free_void((void*)(p))

Here is a function that generates code and returns a pointer, with size encoded:

void *create_exec_buf(unsigned char *code, size_t size)

{

 size_t pages = (size + PAGESIZE - 1) / PAGESIZE;

 if (pages > MAX_CODE_PAGES) {

 // Too large for us to store the size

 return 0;

 }

 size_t alloc_size = PAGESIZE * pages;

 char *buf = alloc_code_bock(alloc_size);

 if (!buf) return 0;

 memcpy(buf, code, size);

 buf = set_exec_prot(buf, alloc_size);

 if (!buf) return 0;

 return jit_ptr(buf, pages);

}

And you can use it to generate new functions, where you don’t need to worry about

remembering the allocated size:

typedef int (*ii_fn)(int);

ii_fn adder(int j)

{

 unsigned char code[] = {

Chapter 13 Function Pointers

447

 // lea eax,[rdi+<j>] (0x87 because we use 32-bit int now)

 0x8d, 0x87, // j starts at index 2...

 0x00, 0x00, 0x00, 0x00,

 // ret

 0xc3

 };

 // the int starts at index 2 and goes in the next four

 // bytes, little endian...

 unsigned char *j_code = code + 2;

 for (int offset = 0; offset < 4; offset++) {

 j_code[offset] = (j >> 8 * offset) & 0xff;

 }

 return (ii_fn)create_exec_buf(code, sizeof code);

}

Here, the functions we generated add a number to an integer. Not too exciting, but I

don’t want too long machine code listings.

You use generated functions like this, where you must remember to jit_free()

them once you are done:

ii_fn add2 = adder(2);

ii_fn add5 = adder(5);

for (int i = 0; i < 5; i++) {

 printf("%d, %d, %d\n", i,

 jit_func(add2)(i), jit_func(add5)(i));

}

jit_free(add2);

jit_free(add5);

If you didn’t get 12 bits from the page alignment, but something substantially

smaller, you could also encode the size in the high bits. On an x64 architecture, pointers

are 64 bits, but only 48 of the bits are used. The rest are left for future extensions.

Therefore, you have the 16 high bits to play with! The people who specified the machine

architecture knew that we would do something like that, so they made rules to prevent

it. We are not allowed to set the bits arbitrarily, relying on the system ignoring them.

Chapter 13 Function Pointers

448

Instead, all the high bits must be the same as bit 47. If it is set, all the high bits must be

set. If it is zero, all the high bits must be zero. It is not exactly hard crypto, so we can easily

circumvent the rule they made to prevent us from doing exactly what we are doing.2 We

can put the size in the high 16 bits by shifting up 48 bits. When we want the size back, we

shift the size back. When we want to use the pointer as an actual pointer, we remove the

size and set the top bits to their canonical form:

#define CODE_SIZE_BITS 16

#define MAX_CODE_PAGES ((1ull << CODE_SIZE_BITS) - 1)

#define CODE_PTR_MASK ((1ull << 48) - 1)

#define CODE_SIZE_MASK (~CODE_PTR_MASK)

#include <stdint.h>

#define jit_ptr(f,s) \

 (void *)(((uint64_t)f & CODE_PTR_MASK) | (s << 48))

#define jit_pages(p) \

 (((uint64_t)p & CODE_SIZE_MASK) >> 48)

// upper 16 set if 47 set

#define upper_bits(p) \

 ~(((uint64_t)p & (1ull << 47)) - 1)

#define lower_bits(p) \

 ((uint64_t)p & CODE_PTR_MASK)

#define canonical_ptr(p) \

 (lower_bits(p) | upper_bits(p))

// using compiler extension __typeof__ for cast

#define jit_func(p) \

 ((__typeof__(p))(canonical_ptr(p)))

I don’t recommend that you use the high bits this way, but you can if you want to.

You are in danger when machines are eventually updated to use more bits, but with code

this low level, and with code generation, it is a price you might be willing to pay.

2�We probably shouldn’t, because the bits could be used in the future. I don’t expect our data
busses will be larger in the near future, but it is probably still best not to do what I am showing
you here!

Chapter 13 Function Pointers

449
© Thomas Mailund 2021
T. Mailund, Pointers in C Programming, https://doi.org/10.1007/978-1-4842-6927-5_14

CHAPTER 14

Generic Lists and Trees
We now return to lists and trees and consider what it will take to make them generic

the way we make generic dynamic arrays in Chapter 10. The techniques we used there,

working with void pointers or generating code using macros, will also work with lists and

trees, but we will take a different approach.

With lists and trees, we are not working with contiguously allocated chunks of

memory, so in principle, links and nodes can have any size. A generic data structure

needs to know about the bits that define a link or a node, but if we allocate memory to

store additional data alongside links and nodes, it will not affect the generic code at

all. If we put a link or node structure in a user data structure, the generic code can use

those. We have to leave it to the user to allocate all data. If the generic code does not

know about user data, it cannot allocate space for it nor can it initialize it—but once the

memory exists, it doesn’t matter that it was allocated as part of a larger block.

We cannot implement the data structures utterly independent of the user data,

however. We need a way to delete links and nodes, for example. Maybe we could

unlink links and nodes from the structure and return it to the user for him to free them

to get around that. Or we could make the user give us a function pointer to handle

deallocation. For search trees, we need to compare nodes, to keep the search tree order,

and here we need the user to provide a comparison operator. A function pointer is a

natural choice. Generally, there will be functions that the user must supply for various

operations. It is a design choice whether they should provide a function when they

invoke a data structure operation, or whether we should store the functions with the data

structure, and often it will be a mix of the two approaches. It will be a mix in the following

sections, where we will add function pointers to lists and trees for the operations we

expect to be constant throughout the lifetime of a data structure instance, and where we

will add function pointer arguments to operations where we could expect the user to

want to use different callbacks.

https://doi.org/10.1007/978-1-4842-6927-5_14#DOI

450

�Generic Lists
If we remove all user data from a (doubly linked) list, which admittedly was only an

integer in our previous implementation, we are left with two pointers to a link.

typedef struct link {

 struct link *prev;

 struct link *next;

} link;

Most of the operations we had on links didn’t look at the data in the link; they only

manipulated the pointers, and those functions will work just as well on our reduced

structure.

static inline

void connect(link *x, link *y)

{ x->next = y; y->prev = x; }

static inline

void connect_neighbours(link *x)

{ x->next->prev = x; x->prev->next = x; }

static inline

void link_after(link *x, link *y)

{

 y->prev = x; y->next = x->next;

 connect_neighbours(y);

}

static inline

void link_before(link *x, link *y)

{

 link_after((x)->prev, y);

}

// This time, unlink will set x's pointers to NULL.

// We don't want to risk the callback function modifying

// the list after the link is removed.

static inline

void unlink(link *x)

Chapter 14 Generic Lists and Trees

451

{

 if (!x->prev || !x->next) return;

 x->next->prev = x->prev;

 x->prev->next = x->next;

 x->prev = x->next = 0;

}

For links, however, we might want to store function pointers so the user can

parameterize them. I will add a function for freeing the memory of a link and for printing

a link. The operations you might need will, of course, depend on your applications. You

might have no need for printing lists, so you can leave that function out. Your application

might hold references to all links you want to delete, so you don’t need the list to know

about the deallocation function. On the other hand, you might have other operations

that you want a list to provide, which will depend on user-provided functions. The code

you need to write will be similar regardless of which functions you add to a list.

I will write a structure that contains function pointers and call it a list_type. When

you create a new list, you must provide its “type” through such a struct. A list will

contain the functions and the “head” link we use for a circular list.

typedef struct list_type {

 void (*free)(link *);

 void (*print)(link *);

} list_type;

typedef struct list {

 link head;

 list_type type;

} list;

Many of the list operations we had in Chapter 4 need only a slight modification to

work with the new list structure. We need to work in the head member of the struct

instead of directly on the dummy element in the list. Aside from that, though, there is

nothing surprising:

static inline

link *head(list *x) { return &x->head; }

static inline

link *front(list *x) { return head(x)->next; }

Chapter 14 Generic Lists and Trees

452

static inline

link *back(list *x) { return head(x)->prev; }

static inline

bool is_empty(list *x) { return head(x) == front(x); }

static inline

void append(list *x, link *link) { link_before(head(x), link); }

static inline

void prepend(list *x, link *link) { link_after(head(x), link); }

To create a list, we need the user to provide a list_type. When can then allocate the

list structure, set the pointers in the head member to point to the head, and copy the list

pointers into the new struct.

list *new_list(list_type type)

{

 list *list = malloc(sizeof *list);

 if (list) {

 *list = (struct list){

 .head = { .next = &list->head,

 .prev = &list->head },

 .type = type

 };

 }

 return list;

}

I have chosen to copy the function pointers into the struct rather than have a

pointer to a list_type object. This is a somewhat arbitrary choice. It saves the user from

having to worry about memory management of a list_type object, but at the cost of

having copies of the list_type in every list structure. However, I don’t expect there to

be many lists of the same type in my imaginary application. There might be many links,

so I wouldn’t want to put function pointers there if I don’t need them—and in any case,

the list implementation won’t know about what I put in user-defined links—but I am

okay with embedding the pointers in the list objects.

Chapter 14 Generic Lists and Trees

453

To free a list, we must run through the links and free them. We have the embedded

free function pointer to help us. We have to make a choice about what happens if the

user provided a NULL pointer here, however. We could consider that an error and ignore

the issue. It would crash the program if we tried to call the function, but that would be

part of the interface if we don’t allow NULL pointers. We could also decide to provide a

default, for example, free(). That way, if the user doesn’t provide a function, we assume

that links are heap-allocated objects that we can free(). I will pick a third option and say

that if there isn’t a free function provided, then we don’t free the links.

void free_list(list *x)

{

 void (*free_link)(link *) = x->type.free;

 // We can only free if we have a free function.

 // Otherwise, assume that we shouldn't free.

 if (free_link) {

 link *lnk = front(x);

 while (lnk != head(x)) {

 link *next = lnk->next;

 free_link(lnk);

 lnk = next;

 }

 }

 free(x);

}

A user might put stack-allocated or global variables in a list. Who knows what users

get up to when you aren’t looking? As long as they don’t provide a free function pointer,

we won’t free links. If they want the links freed, they must provide a function—otherwise,

we might leak memory here. It is a design choice, and you can choose to do it differently.

For printing a list, I will make a different choice. I will provide a default print function

that we use if the user doesn’t provide one:

// Default print function

static void print_link(link *lnk)

{

 printf("<link %p>", (void *)lnk);

}

Chapter 14 Generic Lists and Trees

454

void print_list(list *x)

{

 void (*print)(link *) =

 (x->type.print) ? x->type.print : print_link;

 printf("[");

 for (link *lnk = front(x);

 lnk != head(x); lnk = lnk->next) {

 print(lnk);

 putchar(' ');

 }

 printf("]\n");

}

This is again an arbitrary choice.

For some operations, we might wish to provide a function pointer to the operation

itself rather than the list. There are operations where we can imagine we want to

parameterize the operation itself, and not expect each invocation of the operation to use

a (list) global callback. For example, we could want a function that finds the next link

in a chain that satisfies some predicate. The predicate is part of the operation and not

a property of the list, and it would give us a way to iterate through a subset of a list. We

could implement such a function like this:

link *find_link(list *x, link *from, bool (*p)(link *))

{

 for (link *lnk = from;

 lnk != head(x);

 lnk = lnk->next) {

 if (p(lnk)) return lnk;

 }

 return 0;

}

Here, we search from the link from and forward to the end of the list, but we will

return if we find a link that satisfies the predicate p, a function that takes a link as input

and returns a Boolean. We return NULL if we do not find a link; it seems like a good way

to indicate that we couldn’t find what we were searching for.

Chapter 14 Generic Lists and Trees

455

If you want to iterate through links, you should start from the front element in the list

(the link after the head, or front(x) for a list x) and use the function like this:

for (link *lnk = find_link(x, front(x), p);

 lnk;

 lnk = find_link(x, lnk->next, p)) {

 // do something

}

How we write a predicate that can look at user data, and how we can get user data

out from a link, is covered later. Notice that you have to continue the search from lnk-

>next in the increment. Otherwise, you get lnk right back because it already satisfies the

predicate (unless you change that in “do something”).

In Chapter 4, we had a function that would delete all links with a certain value. With

a function pointer, we can generalize this and simultaneously have a generic function.

Give the function, let us call it delete_if(), a predicate function pointer as argument,

and delete the links that satisfy the predicate.

void delete_if(list *x, bool (*p)(link *))

{

 void (*free)(link *) = x->type.free;

 link *lnk = front(x);

 while (lnk != head(x)) {

 link *next = lnk->next;

 if (p(lnk)) {

 unlink(lnk);

 if (free) free(lnk);

 }

 lnk = next;

 }

}

To delete a link, we, of course, need the free pointer from the type. If it is NULL, we

cannot deallocate a link, but we will always unlink() it, so it will still be removed from

the list.

Chapter 14 Generic Lists and Trees

456

These are enough operations for our list, I think. I am convinced that you can work

out how to add more functions from the example given. It is time to explore how we can

provide user data to links, given that the list implementation doesn’t know about that

data. Somehow, user data must provide link structures to the list, and we should be able

to cast between the user structures and the link structures as needed.

�Casting to Links
As we saw in Chapter 13, we can implement a form of polymorphism by exploiting that

the data you put at the top of a struct will, when properly cast, look like that kind of

data. If you have a type T and we define

typedef struct S {

 T t;

 // more here

} S;

then we can cast any pointer to an object of type S to a T pointer and treat the top of the S

object as a T object, and we can cast the pointer back from T * to S * and get the original

object. Be careful here, though. You cannot safely cast any T * to S *. You obviously

can’t dereference and access any T object as if it were an S object—such objects won’t

have the “more here” data. Depending on how pointers are represented, you might not

even be able to represent all pointers to T as pointers to S, since the structure S can have

stricter alignment requirements, and that can affect the representation of pointers. But

if you stick to pointers to objects of type S, you can safely cast them to T *, pass those

pointers to functions, and get results back, and the T * pointers you get—because they

really point to S objects—can be cast back to S *.

For lists, this means that we can define link structs with any data we wish if we put

a link as the first element in the struct. A list’s head will have type link, not the larger

link type we define, so you cannot necessarily cast the head link to a user type, but you

shouldn’t be doing that to begin with. It doesn’t have any of the user data. The preceding

generic list functions do not call user functions with the head of the data, and it is easy

enough to avoid if you want to.

Chapter 14 Generic Lists and Trees

457

As an example, we could want a list of integers, and we could define this struct for

links:

struct int_link {

 link link;

 int value;

};

typedef struct int_link ilink;

ilink *new_int_link(int value)

{

 ilink *lnk = malloc(sizeof *lnk);

 if (lnk) lnk->value = value;

 return lnk;

}

The print and free pointers in a list_type are functions that take link as

arguments, but if we only insert pointers to ilink, then we can safely cast from link * to

ilink * in functions we intend to use with an integer list, and we can define the type of

integer lists as

void print_int_link(link *lnk)

{

 printf("%d", ((ilink *)lnk)->value);

}

void free_int_link(link *lnk)

{

 free(lnk); // Nothing special

}

list_type int_list = {

 .free = free_int_link,

 .print = print_int_link

};

Chapter 14 Generic Lists and Trees

458

A predicate we might use for find_link() or delete_if() could check if the value

in a link is an even number, but casting the link to the integer link type and checking the

value:

bool is_even(link *l)

{

 ilink *link = (ilink *)l;

 return link->value % 2 == 0;

}

and you could use an integer list as in this small program:

int main(void)

{

 list *x = new_list(int_list);

 for (int i = 0; i < 10; i++) {

 ilink *lnk = new_int_link(i);

 if (!lnk) abort();

 append(x, (link *)lnk);

 }

 print_list(x);

 ilink *lnk = (ilink *)find_link(x, front(x), is_even);

 printf("%d\n", lnk->value);

 lnk = (ilink *)find_link(x, lnk->link.next, is_even);

 printf("%d\n", lnk->value);

 for (link *lnk = find_link(x, front(x), is_even);

 lnk;

 lnk = find_link(x, lnk->next, is_even)) {

 printf("%d ", ((ilink *)lnk)->value);

 }

 printf("\n");

 delete_if(x, is_even);

 print_list(x);

 free_list(x);

Chapter 14 Generic Lists and Trees

459

 // using stack-allocated links

 ilink l1 = { .value = 13 };

 ilink l2 = { .value = 42 };

 struct list_type type = {

 .print = print_int_link,

 .free = 0 // Do not free stack allocated links

 };

 x = new_list(type);

 append(x, (struct link *)&l1);

 append(x, (struct link *)&l2);

 print_list(x);

 free_list(x);

 return 0;

}

�Using Offsets
Putting a link struct at the top of a user-defined link structure works fine until you

want to put to use your data with more than one generic data structure. But imagine that

you want to put your data into more than one list—or a list and a tree simultaneously. If

the generic struct must sit at the top of your struct, then you would need to copy the

actual data, so it can go into more than one object. Or put your data somewhere else

and only have pointers to it your links and nodes. Having to put the generic struct first

in your data structs seems too restrictive, and it is because the generic code will work

just fine whether you put the generic data at the top of your structs or not. That code just

needs their addresses and doesn’t worry about whether those addresses are at offset

zero of your struct or not. It is to get your data structs back from the generic code that

is the issue. And there is a solution that will let you embed the generic structure—or

structures—wherever you want.

Let’s imagine that I want to put the same data into two lists, one that lets me run

through it in the forward direction and one that lets me run through it in the backward

direction. I know that we can already do this with a single doubly linked list, but go along

with it; it is only an example. We then need to link the same object into two separate lists,

so it needs to contain two link structures. It could look like this:

Chapter 14 Generic Lists and Trees

460

typedef struct double_link {

 link forward_link;

 link backward_link;

 int value;

} dlink;

dlink *new_dlink(int value)

{

 dlink *link = malloc(sizeof *link);

 if (link) link->value = value;

 return link;

}

If I give you a link * pointer, and you want to look at the dlink * pointer, how do

you get it? In the general case, the answer is that you don’t. We don’t have a general way

of determining if we are pointing to the forward_link or backward_link part of a dlink.

There might be some (probably unportable) trickery we can do, but I doubt there is

much to be done in entirely portable C. However, we don’t just get random link

* values thrown at us. We know which list we get a link from. And if it comes from the

forward list, our link * must point to a forward_link, and if it comes from the backward

list, it must point to a backward_link. And if I know which of the two the link * points

to, I can get the address of the dlink structure that contains the link.

The offsetof() macro from <stddef.h> (that we have seen before) tells us at which

offset any member sits in a struct. If I call

. offsetof(dlist,forward_link)

I will get the offset of forward_link in a dlink. That value is how many bytes

(technically char) I have to go from the beginning of the dlink to get to forward_link.

So, with a pointer p to a dlink, forward_link will sit at

(char *)p + offsetof(dlist,forward_link)

The (char *) cast is necessary here because offsetof() gives us the number of

bytes to go up, but adding to p will move us in jumps of sizeof(dlink). Anyway, if I can

go from a pointer to a dlink to its forward_link by adding this offset, I can also go the

other way. If I have a pointer to a forward_link, I can subtract

offsetof(dlist,forward)

Chapter 14 Generic Lists and Trees

461

and get the dlink it sits in. The following macro will get you the containing struct from

a pointer to a member inside it, using that computation:

#define struct_ptr(p,type,member) \

 (type *)((char *)p - offsetof(type, member))

In the following code, we use this struct_ptr() macro to get the user-defined link

from the two generic link structs inside it. Notice that we have to provide different

functions to the two list types because the struct_ptr() macro needs to know which

member we are using. The callback functions will know which of the embedded links we

should use, and it is the only way we can keep track of that in this implementation.

void print_dlink(dlink *link)

{

 printf("%d", link->value);

}

void print_forward(link *link)

{

 print_dlink(struct_ptr(link, dlink, forward_link));

}

void print_backward(link *link)

{

 print_dlink(struct_ptr(link, dlink, backward_link));

}

void free_dlink(dlink *link)

{

 // We have to unlink from both lists

 // before we can safely free the link.

 unlink(&link->forward_link);

 unlink(&link->backward_link);

 free(link);

}

void free_forward(link *link)

{

 free_dlink(struct_ptr(link, dlink, forward_link));

}

Chapter 14 Generic Lists and Trees

462

void free_backward(link *link)

{

 free_dlink(struct_ptr(link, dlink, backward_link));

}

 list_type forward_type = {

 .free = free_forward,

 .print = print_forward

 };

 list_type backward_type = {

 .free = free_backward,

 .print = print_backward

 };

 bool is_forward_even(link *l)

 {

 dlink *link = struct_ptr(l, dlink, forward_link);

 return link->value % 2 == 0;

 }

 int main(void)

 {

 list *forward = new_list(forward_type);

 list *backward = new_list(backward_type);

 if (!forward || !backward) abort(); // error handling

 for (int i = 0; i < 10; i++) {

 dlink *link = new_dlink(i);

 if (!link) abort();

 append(forward, &link->forward_link);

 prepend(backward, &link->backward_link);

 }

 print_list(forward);

 print_list(backward);

 // Try changing the first link in forward...

 dlink *link = struct_ptr(front(forward), dlink, forward_link);

 link->value = 42;

Chapter 14 Generic Lists and Trees

463

 // Now both lists have changed (because it is the same link)

 print_list(forward);

 print_list(backward);

 // deleting even numbers...

 delete_if(forward, is_forward_even);

 // removes them from both lists

 print_list(forward);

 print_list(backward);

 free_list(forward);

 free_list(backward);

 return 0;

}

�Generic Search Trees
For search trees, we can, not surprisingly, take the same approach as for lists. We can

make a generic struct that holds the structure of nodes only and let the user allocate

larger objects that contain such a node struct. The node could look like this:

typedef struct node {

 struct node *parent;

 struct node *left;

 struct node *right;

} node;

I have chosen a node with a parent pointer for this chapter. Most of the operations

we will implement do not need the extra pointer, but I want to be able to delete a node

from a tree through a pointer to the node. When the data we put in the tree has an

existence separate from the tree, which they will if the nodes are merely embedded

structs, it can be convenient to be able to remove a node from a tree using just the

pointer. If we have a node, but we do not know which tree it sits in, we can still remove

the node. If we have a parent pointer, we can do this. Otherwise, we would need to find

the node’s location in its tree through a search, and we can only do that if we also have a

reference to the tree—which we might not have. You will see how we exploit the parent

pointer to do this when we implement removal later.

Chapter 14 Generic Lists and Trees

464

For the tree structure, we need function pointers to handle what we cannot do

directly from the generic nodes. I will add a print and free function to the type, as for

lists, but we also need something that lets us compare nodes, so we can determine the

order of nodes. Here, we could choose to have a comparison function on nodes, but I will

split comparisons into two steps. One step is to get a key from a node, the relevant data

in the node for comparisons, and another that compares keys. This will make it easier to

use search trees as tables. If, for example, we want a table from strings to integers, nodes

would have to hold both the strings as keys and the integers as values, but when we look

up a string in the tree, we do not need to make a node for doing that. We can look up

using only the string as a key.

I will implement the function pointer table and the tree struct like this:

typedef struct stree_type {

 void const * (*key) (node *n);

 int (*cmp) (void const *x,

 void const *y);

 void (*print)(node *n);

 void (*free) (node *n);

} stree_type;

typedef struct stree {

 node root; // dummy node

 stree_type type;

} stree;

In the stree structure, we use a dummy node as the tree’s root. The purpose of the

dummy is the same as for all dummy elements; we can avoid dealing with some special

cases. If we have a dummy root of the tree, we can ensure that all “real” nodes have a

non-NULL parent pointer. The real tree will start at the root’s left child.

This is the interface we will implement:

stree *new_tree(stree_type type);

static inline bool is_empty_tree(stree *tree)

{ return tree->root.left == 0; }

void insert_node(stree *tree, node *n);

void print_tree(stree *tree);

void free_tree(stree *tree);

Chapter 14 Generic Lists and Trees

465

node *find_node(stree *tree, void const *key);

void remove_node(node *n);

void delete_node(stree *tree, node *n);

static inline

bool contains(stree *tree, void const *key)

{ return !!find_node(tree, key); }

static inline

void delete_key(stree *tree, void const *key)

{

 node *x = find_node(tree, key);

 if (x) delete_node(tree, x);

}

Given a type struct, we can create a tree. We can check if it is empty (which it is if

the dummy root’s left child is NULL). We can insert nodes, print and free trees, which is

self-explanatory. We will have a function that finds a node by key (or return NULL if there

is no node with the given key). We can remove a node from the tree—it will remove it

from the tree structure but not delete it. This function does not need a tree as input. It is

one we can use to decouple a node we have a reference to from the tree it sits in, without

having a reference to the tree. We can also delete a node, which will remove it from the

structure and then use the stored free function. For that, you need the tree, because

the tree holds the free pointer. If you want to check if a key is in the tree, you can get the

corresponding node and check if it is NULL. If you want to delete a key, you can also find

the node and delete it if it isn’t NULL.

Nothing surprises in the function for allocating a tree. We have to require that the key

and cmp functions are provided, as they are essential for the workings of a search tree, but

other than this, it is a simple initialization function.

stree *new_tree(stree_type type)

{

 // key and cmp are always needed. The rest

 // are optional.

 if (!(type.key && type.cmp)) return 0;

 stree *tree = malloc(sizeof *tree);

 if (tree) {

Chapter 14 Generic Lists and Trees

466

 *tree = (stree) {

 .root = { .parent = 0, .left = 0, .right = 0 },

 .type = type

 };

 }

 return tree;

}

When searching in a tree, we use a modified find_loc() function. It has to use the

key and cmp functions from the tree’s type for comparisons. Otherwise, it follows

the same logic as in Chapter 12.

// Find parent and child

node **find_loc(stree *tree, void const *key,

 node **n, node **p)

{

 void const * (*get_key)(node *n) = tree->type.key;

 int (*cmp)(void const *x, void const *y) = tree->type.cmp;

 while (*n) {

 int cmpres = cmp(key, get_key(*n));

 if (cmpres == 0) return n;

 *p = *n;

 if (cmpres < 0) n = &(*n)->left;

 else n = &(*n)->right;

 }

 return n;

}

The function for finding a node is trivial once we have find_loc():

node *find_node(stree *tree, void const *key)

{

 node *parent = &tree->root;

 node **real_tree = &parent->left;

 return *find_loc(tree, key, real_tree, &parent);

}

Chapter 14 Generic Lists and Trees

467

When we insert a node, we expect that the user has already allocated and initialized
the memory for it, so we cannot have allocation failures. However, we need to deal
with what happens if the key in the new node is already in the tree because as we have
implemented the tree, we cannot have two nodes with the same key. An easy solution
is to get rid of the old node. The semantics is that if we use the tree as a table, we have
replaced the old value for the key with the new.

void insert_node(stree *tree, node *n)
{
 node *parent = &tree->root;
 node **real_tree = &parent->left;
 void const *key = tree->type.key(n);
 node **target = find_loc(tree, key, real_tree, &parent);

 if (*target) { // remove the old node
 delete_node(tree, *target);
 }

 *target = n;
 n->parent = parent;
 n->left = n->right = 0; // leaf
}

In this function, we find the location where we should insert the node, deleting the
old node if the key was already there. Then we insert the new node at the right location
and connect the node’s parent pointer to its new parent and set its children to NULL to
make it a leaf.

The remove_node() function behaves exactly as the delete function we had
previously, except that we do not need the initial search for the node. We already have
the node and its parent, so we can go right ahead and remove it. We can remove it
directly if it has an empty child, and otherwise we have to replace it with its rightmost
child.

node **rightmost(node **n, node **p)
{
 while ((*n)->right) {
 *p = *n;
 n = &(*n)->right;

 }

Chapter 14 Generic Lists and Trees

468

 return n;
}

void remove_node(node *n)
{
 if (!n->parent) {
 // parentless nodes are not in the tree
 // (they have probably been removed before)
 return;
 }

 // Get the location to replace.
 node **loc = (n == n->parent->left)
 ? &n->parent->left : &n->parent->right;

 if (!(n->left && n->right)) {
 // has an empty child...
 *loc = n->left ? n->left : n->right;
 if (*loc) (*loc)->parent = n->parent;
 } else {
 node *rm_parent = n;
 node **rm_ref = rightmost(&n->left, &rm_parent);
 node *rm = *rm_ref;
 *rm_ref = rm->left;
 if (*rm_ref) (*rm_ref)->parent = rm_parent;

 // we cannot simply move the value now, but must
 // reconnect the pointers...
 *loc = rm; // makes *loc point to rm
 *rm = *n; // copies the struct (i.e. the pointers)
 // When copying the structs like this, we only copy
 // the bits that are in the type they have, so only the
 // three pointers and not whatever else might sit in the
 // actual nodes.
 }

 // now, to make our code safer, we NULL the pointers
 // before we call the free function.
 n->left = n->right = n->parent = 0;

}

Chapter 14 Generic Lists and Trees

469

We set the pointers in the node to NULL before we return from the call. This can
be helpful when we call remove_node() in callback function calls, where having NULL
pointers here can prevent us from any unnecessary recursion or from accessing data that
might have been freed.

The delete_node() function removes the node and uses the stored free function to
deallocate it:

void delete_node(stree *tree, node *n)
{
 remove_node(n);
 if (tree->type.free)
 tree->type.free(n);
}

The functions to print and free a tree need to use the function pointers, but
otherwise they do not change. I have listed recursive versions in the following; you are
welcome to implement the recursion and stack free variants if you feel for it.

// Just recursion this time; the techniques for avoid it
// hasn't changed.
static void default_print(node *n)
{
 printf("<node %p>", (void*)n);
}
void print_node(void (*print)(node *n), node *n)
{
 if (!n) return;
 putchar('(');
 print_node(print, n->left);
 putchar(','); print(n); putchar(',');
 print_node(print, n->right);
 putchar(')');
}
void print_tree(stree *tree)
{
 void (*print)(node *) =
 tree->type.print ? tree->type.print : default_print;
 print_node(print, tree->root.left);

}

Chapter 14 Generic Lists and Trees

470

void free_nodes_rec(void (*free)(node *n), node *n)

{

 if (!n) return;
 free_nodes_rec(free, n->left);

 free_nodes_rec(free, n->right);

 if (free) {
 // remove pointers before callback

 n->left = n->right = n->parent = 0;

 free(n);

 }

}

void free_tree(stree *tree)

{

 free_nodes_rec(tree->type.free, tree->root.left);

 free(tree);

}

Imagine that we want to put the same data in both a list and a tree—now that we

have the option with generic data structures for both. We can use the struct_ptr()

macro to get the struct that contains both the link and the node of user data, so that

should be straightforward. We could, for example, use that in an application where we

want to have strings in some given order, for example, insertion order in a table, and at

the same time have efficient lookup to remove strings from the table. A data type that

contains nodes, links, and strings could look like this:

typedef struct ordered_string {
 node node;

 link link;

 char const *str;

} ostring;

ostring *new_ostring(char const *str)

{

 ostring *n = malloc(sizeof *n);
 if (!n) abort();
 n->str = str;

 return n;

}

Chapter 14 Generic Lists and Trees

471

Print and delete functions could look like this:

void print_ordered_string(ostring *str)

{

 printf("\"%s\"", str->str);

}

void free_ordered_string(ostring *str)

{

 // Remove from data structures...

 unlink(&str->link);

 remove_node(&str->node);

 // and then free...

 free(str);

}

We can’t use those directly with the data structures because they have the wrong type

(and with the callbacks, we need to go from nodes/links to ostring using contains()),

but they are the functions we can use once we have converted links and nodes. When

we free an ostring, we should remove it from both the list and the node, so we use the

unlink() and remove_node() functions. Here, where we only have the structure and not

the list or tree, it is useful that these functions do not need the list or tree as arguments,

but only the link or node.

To get the functions for the search tree, we must adapt the functions to its interface

and put them in an stree_type structure:

void const *strnode_key(node *n)

 { return struct_ptr(n, ostring, node)->str; }

int strnode_cmp(void const *x, void const *y)

 { return strcmp(x, y); }

void strnode_print(node *n)

 { print_ordered_string(struct_ptr(n, ostring, node)); }

void strnode_free(node *n)

 { free_ordered_string(struct_ptr(n, ostring, node)); }

Chapter 14 Generic Lists and Trees

472

stree_type strnode_type = {

 .key = strnode_key,

 .cmp = strnode_cmp,

 .print = strnode_print,

 .free = strnode_free

};

Likewise for the list interface:

void strlink_print(link *lnk)

 { print_ordered_string(struct_ptr(lnk, ostring, link)); }

void strlink_free(link *lnk)

 { free_ordered_string(struct_ptr(lnk, ostring, link)); }

list_type strlink_type = {

 .print = strlink_print,

 .free = strlink_free

};

If we now want a data structure with strings in insertion order, and with a search tree

as a map, we can define it like this:

typedef struct ordered_strings {

 stree *map; list *order;

} ordered_strings;

ordered_strings *new_ordered_strings(void)

{

 ordered_strings *os = malloc(sizeof *os);

 if (!os) abort(); // handle alloc errors

 os->map = new_tree(strnode_type);

 os->order = new_list(strlink_type);

 if (!os->map || !os->order) abort(); // handle errors

 return os;

}

Chapter 14 Generic Lists and Trees

473

void add_string(ordered_strings *os, char const *str)
{
 ostring *ostr = new_ostring(str);
 if (!ostr) abort(); // handle alloc errors
 insert_node(os->map, &ostr->node);
 append(os->order, &ostr->link);
}

void remove_string(ordered_strings *os, char const *str)
{
 node *n = find_node(os->map, str);
 if (n) {
 ostring *x = struct_ptr(n, ostring, node);
 free_ordered_string(x);
 }
}

When we add a string, we append it to the list, so we have the insertion order there,
and we insert it in the tree, so we can get fast lookup. When we remove a string, we find
the data from the tree and remove it, where free_ordered_string() removes it from
both the list and the tree.

If you want to remove data by index, in the ordered list, we can implement it like this,
where using a negative index will look from the back of the list:

link *take_front(list *x, int idx)
{
 for (link *lnk = front(x);
 lnk != head(x); lnk = lnk->next) {
 if (idx-- == 0) return lnk;
 }
 return 0;
}

link *take_back(list *x, int idx)
{
 for (link *lnk = back(x);
 lnk != head(x); lnk = lnk->prev) {
 if (idx-- == 0) return lnk;

 }

Chapter 14 Generic Lists and Trees

474

 return 0;
}

void remove_index(ordered_strings *os, int idx)
{
 link *lnk;
 if (idx < 0) {
 lnk = take_back(os->order, -idx - 1);
 } else {
 lnk = take_front(os->order, idx);
 }

 if (!lnk) {
 // report an error...
 return;
 }
 ostring *x = struct_ptr(lnk, ostring, link);
 free_ordered_string(x);
}

It is linear time operations, so it might not be optimal for your use, but the functions
are there as an example, so I can live with that.

If we free both tree and list, the order will affect the running time. If you delete the
list first, you will delete each link, which will call the free function. When the function
is called, the link is already unlinked, but there is no harm in unlinking it again—the
unlink() function recognizes that there is nothing to unlink and that will be all. You
also call remove_node() from the callback deallocator, and this can involve a search for
rightmost(). Each deletion might thus trigger a search in the tree. If you delete the tree
first, however, the tree deletion code will set the node’s pointers to NULL before it calls
the callback, so the remove_node() call there will not trigger a search. The unlink()
call never triggers a search. So deleting the nodes/links via the tree will be faster than
deleting them through the list, so that is what we will do.

void free_ordered_strings(ordered_strings *os)
{
 free_tree(os->map);
 free_list(os->order);
 free(os);

}

Chapter 14 Generic Lists and Trees

475

I didn’t really have any exciting application in mind with this data structure, but you

can see it in use here:

int main(void)

{

 ordered_strings *os = new_ordered_strings();

 add_string(os, "foo");

 add_string(os, "bar");

 add_string(os, "baz");

 add_string(os, "qux");

 add_string(os, "qax");

 print_list(os->order);

 print_tree(os->map); printf("\n\n");

 printf("removing 'bar'\n");

 remove_string(os, "bar");

 print_list(os->order);

 print_tree(os->map); printf("\n\n");

 printf("Removing index 1 (baz)\n");

 remove_index(os, 1); // baz

 print_list(os->order);

 print_tree(os->map); printf("\n\n");

 printf("Removing index -3 (foo)\n");

 remove_index(os, -3);

 print_list(os->order);

 print_tree(os->map); printf("\n\n");

 printf("all done\n");

 free_ordered_strings(os);

 return 0;

}

Chapter 14 Generic Lists and Trees

476

As long as we can delegate the allocation of memory to the user of a data structure,

it is not hard to implement a generic data structure. We have a minimal struct with the

information the data structure needs, and this must be embedded in the user’s data.

Everything else is handled with generic code, supplemented with callback functions

provided as function pointers. Lists and trees are not special in this regard; you can do

this with any data structure where you can let the user handle memory allocation.

Chapter 14 Generic Lists and Trees

477
© Thomas Mailund 2021
T. Mailund, Pointers in C Programming, https://doi.org/10.1007/978-1-4842-6927-5_15

CHAPTER 15

Reference Counting
Garbage Collection
Keeping track of when memory should be freed, so we always remember to do it and

never call free() on the same memory twice, is at times complicated. The scenario

where you have a function that allocates some memory, uses it, and then frees it before

the function returns is hardly ever problematic. If you have many exit points, that is, you

return multiple places, you must ensure that you free everything regardless of how you

exit the function, but unless it is an incredibly complicated function, it is manageable.

However, once you start working with heap-allocated data structures, even as simple as

lists and trees, things can get more complicated. The same memory can be referenced

from multiple places, and you cannot free it before you remove the last reference (at

which point you must).

Consider the first version of singly linked lists from Chapter 11, where we had the

new_link() function for creating a new link with a next pointer to the next link in the list.

With that, we could create lists:

list x = new_link(11, new_link(12, NULL));

list y = new_link(1, new_link(2, x));

where now x is a list with elements 11 and 12, and y is a list with the elements 1, 2, 11,

and 12. The two last links in y are shared with x. We cannot free y as long as we need x

because we would destroy x’s links. We cannot free x while we use y because we would

destroy its last two links.

https://doi.org/10.1007/978-1-4842-6927-5_15#DOI

478

This is a simple example, and of course we could code our way around deleting the

first two, but not the last two links of y if we want to free y, but it should not surprise you

to learn that things can get a lot more complicated than this. When we start wiring up

data structures with pointers to substructures, keeping track of what memory we have a

reference to, and what we can and should free, gets complicated. It is why most modern

programming languages have automatic garbage collection to a varying degree. But C

does not, so we have to deal with it on our own and implement our own strategies.

One of the simplest approaches to memory management, when we find ourselves in

a situation such as this, is reference counting. The idea is as trivial as this: you give each

object a counter that tracks how many references you have to it. When you add another

reference, you increment the counter, and when you remove one, you decrement the

counter. If the counter hits zero, you no longer need the object, and you free it.

As a trivial example, imagine that we have heap-allocated integers. We can add a

counter to each, as in the following code, and initialize each new object with a count of

one—whoever creates the object probably wants a reference to it and will have a pointer

to it, so that is the reference we are counting. We can free these objects with free(),

since they do not contain anything we must recursively free, but in the example, I have

added a function that prints when an object is freed, so it is easier to track. We don’t call

that function directly; however, we use two other functions for memory management:

incref() for adding a reference and decref() for removing one. When you want

another pointer to the object, you incref(), and when you want to remove a reference,

you use decref():

#include <stdio.h>

#include <stdlib.h>

struct rc_int {

 int refcount;

 int value;

};

struct rc_int *new_rc_int(int i)

{

 struct rc_int *p = malloc(sizeof *p);

 if (p) {

 *p = (struct rc_int){

 .refcount = 1, .value = i

Chapter 15 Reference Counting Garbage Collection

479

 };

 }

 return p;

}

void free_rc_int(struct rc_int *i)

{

 printf("Freeing %d\n", i->value);

 free(i);

}

struct rc_int *incref(struct rc_int *p)

{

 if (p) p->refcount++;

 return p;

}

struct rc_int *decref(struct rc_int *p)

{

 if (p && --p->refcount == 0) {

 free_rc_int(p);

 return 0;

 }

 return p;

}

int main(void)

{

 struct rc_int *i = new_rc_int(42);

 struct rc_int *j = incref(i);

 decref(i); // decrements...

 decref(j); // decrements and deletes...

 return 0;

}

Chapter 15 Reference Counting Garbage Collection

480

In both incref() and decref(), we allow NULL pointers. When we can get away with

it, it is easier to write code where we do not need to treat NULL as a special case, and if

we let these two functions return NULL on NULL input, we can write simpler code. In the

main() function, for example, we don’t check for an allocation error because the code

will work correctly on NULL pointers as well. In practice, of course, we need non-NULL

pointers somewhere, but we can defer worrying about that to the point where we have to.

That is the whole idea behind reference counting, but of course there are some

practices you need to make it work as well, or the chapter would be finished by now. We

are not entirely out of the woods with respect to memory management simply because we

add a counter. We still have to know when to increment and decrement the counter. This,

however, we can mostly handle on a per-function basis and doesn’t require an overview of

the entire program and how pointers are connected globally. To demonstrate how we can

use reference counting traditionally, I will return to our trusted lists and trees.

�Immutable Links with Reference Counting
Imagine that we have an application where we want to work with lists, and we want the

lists to be immutable, in the sense that if you have a reference to a list, then that list never

changes. It will always be the same elements in the same order. Such immutability makes

it easy to share data. If we have two lists, and one is a suffix of the other, they can share

all the links in the shorter list. Since we cannot change any links, the longer list doesn’t

have to worry about its suffix changing because we do something to the shorter list.

Immutable data structures can reduce our memory usage when different structures can

share substructures, they are useful for so-called persistent data structures that have their

uses in various algorithms, and they alleviate some problems in concurrent programs. So

immutable lists are not an artificial constraint I made up for this chapter; there really are

applications where you want them. And if you want them, and you want to share suffixes

between them, then reference counting is the ideal strategy for memory management.

We can define an immutable list link like this:

struct link {

 int refcount;

 struct link * const next;

 int const value;

};

Chapter 15 Reference Counting Garbage Collection

481

typedef struct link *list;

The next pointer and the value are const, so we cannot modify the link’s data or

the list that follows the link. The refcount is not const, obviously, since even if the list is

immutable, we need to keep track of how many references we have to any given link.

The lists are much like the first version of singly linked lists in Chapter 11, and

there we had a problem with differentiating between operations that would give us an

empty list and operations that would report errors, as both errors and empty lists were

represented by a NULL pointer. To avoid this, we can explicitly represent empty lists as

a special link. If we have a NULL pointer for a list, it is an error, and if we have an empty

list, it is the designated link.

So, a NULL pointer to a list is an error:

static inline

bool is_error(struct link *x) { return x == 0; }

and we define a special address that we can get through a function get_NIL() to be the

empty list:

struct link *get_NIL(void);

static inline

bool is_nil(struct link *x) { return x == get_NIL(); }

We can define the special link as a static variable in the get_NIL() function:

struct link *get_NIL(void)

{

 static struct link NIL_LINK = { .refcount = 1 };

 return &NIL_LINK;

}

That way, we get the same link every time we get the empty list. The initial reference

count for the empty list is one, but it should be incremented and decremented like other

objects—but never decremented more than incremented, because we obviously do not

want to risk deleting it.

To avoid accidentally decrementing the empty list more than we increment it, we can

use a macro to access it. The macro will increment the reference each time we use it in

an expression.

Chapter 15 Reference Counting Garbage Collection

482

#define NIL incref(get_NIL())

We shouldn’t use this macro to check if we have an empty list because a test such

as NIL == NIL will increment the reference count twice. It isn’t really a problem, since

as long as we never decrement the counter in an empty list to zero, we are fine. Still,

for consistency, we should only increment a reference counter when we are also going

to decrement it later. When we use NIL, we increment, so we should only use it in

expressions where we will eventually decrement as well. Writing NIL gives us a “new”

empty list, and we should think about it as such.

The incref()/decref() and deallocation code look much like the example with

reference counted integers. The decref() function will call another function, free_

link(), when we need to actually free a link. It is listed later.

struct link *incref(struct link *link)

{

 if (link) link->refcount++;

 return link;

}

void free_link(struct link *link);

struct link *decref(struct link *link)

{

 if (link && --link->refcount == 0) {

 free_link(link);

 return 0;

 }

 return link;

}

Now we are almost ready to write list functions, but before we start, we need to lay

down the ground rules for how we work with incrementing and decrementing lists.

These are the rules that ensure that we increment and decrement correctly, so we

always have a valid reference when we need it, and we always decrement references

when we no longer need them. Essentially, it boils down to deciding when a function is

responsible for incrementing a reference it gets as input and when it is responsible for

decrementing a reference that it holds.

Chapter 15 Reference Counting Garbage Collection

483

Consider as an example a function for computing the length of a list. We will see two

versions later, but for now let us just assume that we have a function, length(), that gives

us the length, and that new_link() works as in Chapter 11, that is, it creates a new link.

Now consider this code:

list x = new_link(1, new_link(2, NIL));

int len1 = length(x);

int len2 = length(new_link(1, new_link(2, NIL)));

We use NIL for the empty list, so we have separate references to the empty list we

create in the two lists we construct, the first when we create x and the second when

we create an anonymous list that we immediately call length() on. When we call

length(), does it increment/decrement its input? Let us assume that it does neither, and

x holds the only reference to the front link it points to. Then, if length() doesn’t change

anything, we get the length and x remains the same, with the single reference to the list.

That would work fine, but then the second call to length() could be problematic. Here,

we create a list with the two calls to new_link(), then we call length()—which doesn’t

increment or decrement anything—and once length() returns, we have lost access to

the new list. We have leaked the memory for two links.

On the other hand, if length() decrements its input, so we would free the new list in

the third line of the code, then it would also decrement the reference to x in the first line.

If x is the only reference to that list, decrementing in length() would free the list, and x

would point at freed memory. If length() decrements, and we want to keep x around

after the call to length(), we should incref(x) before we call length():

int len1 = length(incref(x));

Either version of length(), the one that takes ownership of the input and frees it and

the one that doesn’t, is a fine choice. We just need to be careful, so we always know what

kind of function we are using.

I will write functions of both kinds in this section to illustrate how we write both

types, but in practice I would recommend choosing one convention and using it for all

your functions, or at least all the functions you provide to a user, to minimize confusion.

To avoid confusion ourselves in this chapter, I will annotate our functions with two

“keywords,” borrows and takes, for when a function will leave an input as it is (borrows)

or when it takes ownership of the reference (takes) and will decrement the reference.

We can add the keywords to our code using preprocessor definitions:

Chapter 15 Reference Counting Garbage Collection

484

#define borrows

#define takes

The preprocessor will expand them to empty strings, so they have no semantic

meaning in the code, but we can write the keywords together with function arguments.

This is not something I will generally recommend that you do in your code—where I, in

any case, suggest you only use one of the two approaches—but it is my book, and I say

that it is okay in this chapter.1

A function that borrows an argument should not decrement the argument, nor

should it give the argument to another function that takes it because that amounts to

passing on a reference that the borrowing function doesn’t own. A function that takes an

argument should always decref() the argument or give it to another function that takes

ownership of the argument.

To make the “passing of ownership” more explicit in our code, we can use another

macro, transfer():

#define transfer(x) x

The macro doesn’t do anything either; the only purpose it serves is to make explicit

that we are passing on ownership to someone else. Don’t transfer() a reference you do

not own. If you have borrowed a reference, and you want to give it away, incref() it first.

That gives you your very own reference, and you are allowed to give your own reference

away.

Rules for references in arguments are half the strategy. The other is what we expect

from pointers that functions return. Do functions return new references that we are

responsible for decrementing, or do they give us “borrows” references that we should

incref() if we want to keep them? Both approaches are valid, but in this case, for me,

the rule that says that functions always give you a reference feels more reasonable. When

you get the result of a function call, the function doesn’t have a reference any longer—

the function call is done, after all—so either it created a reference, which you definitely

have to own, or it borrowed a reference and then gave it to you, while it wasn’t its to give.

I will follow the rule that if a function returns a reference, it is giving the reference to the

caller. If it borrowed the reference, it must incref(), so it is allowed to give it away.

1�Should you someday decide to annotate your code using macros in this way, don’t pick
lowercase short words like this! You are likely to use those for variables or functions as well, and
that will break your code. I only use them to make the code here easier to follow. In real code,
you should be smarter than this.

Chapter 15 Reference Counting Garbage Collection

485

With these rules in place, let’s write the functions for creating and freeing links:

list new_link(int head, takes list tail)

{

 if (is_error(tail)) return tail;

 list link = malloc(sizeof *link);

 if (!link) { decref(tail); return 0; }

 struct link link_data = {

 .refcount = 1,

 .next = transfer(tail), // gives away the reference

 .value = head

 };

 // explanation below for memcpy()

 memcpy(link, &link_data, sizeof *link);

 return transfer(link);

}

When we create a new link, we provide new_link() with a value and a link, and

we give the function that link, as we have made clear with the takes keyword before

the tail argument. If tail is a NULL pointer, that is, if it is the result of something we

consider an error, we won’t put it into the new link. We will generally return an error if

we get any error lists as input. So, we check for errors first and propagate it if tail is one.

Otherwise, we allocate the new link. That can fail, in which case we should return NULL

to indicate that we had an error. Before we can return, however, we must decrement

tail. The function owns it at this point, and it is responsible for decrementing tail.

If we successfully allocated, we initialize the link. We transfer() the tail to the link,

so it now owns the reference. The construction where we first initialize a stack-allocated

link and then move the data with memcpy() is to get around the const’ness of value and

next and doesn’t serve any other purpose. Once the new link is initialized, we give it to

the caller. The link is initialized with a reference count of one, and the caller now owns

that single reference.

Chapter 15 Reference Counting Garbage Collection

486

When we need to free a link, when its reference count reaches zero in decref(), we
call free_link():

void free_link(struct link *link)
{
 decref(link->next);
 free(link);
}

We must decref(link->next) because the link we are deleting has a reference to its
next that now disappears.

To warm up for writing list functions, consider first a function for printing a list. A
version that borrows a reference could look like this:

void print_list(borrows list x)
{
 assert(!is_error(x));
 printf("[");
 while (!is_nil(x)) {
 printf("%d[%d] ", x->value, x->refcount);
 x = x->next;
 }
 printf("]\n");
}

Since we borrow the list, we don’t need to decref() it when we are done. If we take
the list instead, we would have to

void print_list(takes list x)
{
 assert(!is_error(x));
 printf("[");
 struct link *l = x; // use separate pointer
 while (!is_nil(l)) {
 printf("%d[%d] ", l->value, l->refcount);
 l = l->next;
 }
 printf("]\n");
 decref(x); // remember to decref a taken list

}

Chapter 15 Reference Counting Garbage Collection

487

We loop through the list, so we need a separate variable for that. Otherwise, we

couldn’t decref() the correct list when we are done. We don’t take ownership of the

links that follow x in either function. As long as we have a reference to x, the following

links will not be freed—they cannot go away as long as there is a reference to them, and

as long as x exists, there will be.

What about the now infamous length() function from earlier? A borrowing version

could look like this:

int length_rec(borrows list x, int acc)

{

 assert(!is_error(x));

 if (is_nil(x))

 return acc;

 else

 return length_rec(x->next, acc + 1);

}

static inline

int length(borrows list x)

{ return length_rec(x, 0); }

I have chosen to implement it as a tail-recursive function for no other reason than

to make it a little more interesting when we get to the version that takes its argument.

The compiler will turn it into a loop, and we could easily do so as well if we wanted to.

The recursive function uses an accumulator, acc, to count the number of links we have

run through, and I use another function to give the accumulator a default of zero. With

a version that borrows, there is nothing interesting in using reference counting; we run

through the list in the recursions as we would with any pointer data structure.

With this function, the code from earlier

list x = new_link(1, new_link(2, NIL));

int len1 = length(x);

int len2 = length(new_link(1, new_link(2, NIL)));

will leak memory in the second call to length(), where we get a reference that

we never decrement. For the second call to work, we need a function that takes its

argument, and that could look like this:

Chapter 15 Reference Counting Garbage Collection

488

int length_rec(takes list x, int acc)

{

 assert(!is_error(x));

 if (is_nil(x)) {

 decref(x);

 return acc;

 } else {

 struct link *next = incref(x->next);

 decref(x);

 return length_rec(transfer(next), acc + 1);

 }

}

static inline

int length(takes list x)

{ return length_rec(transfer(x), 0); }

There is a little more meat on this one. Because we take the x argument, we are

responsible for decrementing it as well, which we have to do in both the base case and

the recursive case. It is strictly speaking not essential that we decrement in the base

case, where we have an empty list, since we will never free the empty list anyway, but the

general rule is to decref() if we take a reference, so that is what we do. In the recursive

case, we need x->next, but if decref(x) frees x—it will if we have the only reference

to x—then that might free x->next as well. To prevent this, we need to get our own

reference to x->next, so we incref(x->next). Even if we weren’t worrying about how

x->next could disappear when we decref(x), it is only proper that we incref(x->next)

in any case. We are going to transfer() it to the recursive call, and it is not ours to give

away. It is x that has a reference to x->next, not us, and if we want to give it away, we

need our own reference. So based merely on considerations of criminal conduct, we

should incref(x->next) before we can call recursively. That we must do it before we

decref(x) is because decrementing x’s reference counter could free it. Generally, we

have to consider decref(x) as analogous to free(x), and with free(x) we know better

than to access x->next after we have freed x. It is the same with decref(x). We need to

incref(x->next) so we can transfer() it to the recursive call, we need to decref(x)

because we have taken it, and we need to do it in the order we do, because we cannot get

x->next after calling decref(x).

Chapter 15 Reference Counting Garbage Collection

489

With this version, when we write

list x = new_link(1, new_link(2, NIL));

int len1 = length(x);

int len2 = length(new_link(1, new_link(2, NIL)));

the second call to length() works as intended and frees the link we create, so we do not

leak memory. The first call, however, is giving x to length(x), so we should either write

int len1 = length(transfer(x));

to make clear that x is not around after the call, or we should write

int len1 = length(incref(x));

to keep our own reference after the call.

A borrowing function for reversing a list will look like this:

list reverse_rec(borrows list x, borrows list acc)

{

 if (is_error(x) || is_error(acc)) {

 return 0;

 }

 if (is_nil(x)) {

 return transfer(incref(acc));

 } else {

 return reverse_rec(x->next,

 new_link(x->value,

 transfer(incref(acc))));

 }

}

static inline

list reverse(borrows list x)

{ return reverse_rec(x, get_NIL()); }

Chapter 15 Reference Counting Garbage Collection

490

We are not actually reversing a list. Lists are immutable, so we can’t. We are creating a

new list that has the elements in the original list but in reverse order. It is a recursive function

with an accumulator once again and with a helper function to give the accumulator a default

value. We should start with an empty list, but we can’t use NIL here. That creates a new

reference to the empty list, and since this function doesn’t take ownership of its input, we

shouldn’t create new references for it. So get_NIL() is what we need.

The function recurses along with the list x, at each level taking the value in x and

putting it into a new link, which prepends the new value to the current acc. Once we

reach the end of the recursion, where x is empty, acc contains the reversed list. Since acc

is a reference that we have borrowed, and since our rule is that functions should return

new references to objects, we must incref(acc) when we return the accumulator. In the

recursive calls, where we create new links, we should also remember to incref(acc).

The new_link() function takes its reference argument, and since we have only borrowed

acc, we must get a reference so we can give it away.

A function that takes both arguments would look like this:

list reverse_rec(takes list x, takes list acc)

{

 if (is_error(x) || is_error(acc)) {

 decref(x); decref(acc);

 return 0;

 }

 if (is_nil(x)) {

 decref(x);

 return transfer(acc);

 } else {

 int value = x->value;

 struct link *next = incref(x->next);

 decref(x);

 return reverse_rec(transfer(next), new_link(value, transfer(acc)));

 }

}

static inline

list reverse(takes list x)

{ return reverse_rec(x, NIL); }

Chapter 15 Reference Counting Garbage Collection

491

The default argument to the accumulator is now NIL because we want to give the

function a new reference to the empty list. If either of the input lists has an error value,

we report an error, but because we have ownership of the lists, we must decref() them

before we return, also when we have errors, so we do that first. In the base case, we

should return acc. We own it, so we can give it away without incref(), but since we

also own x, and we do not give it away, we must decref() it. In the recursive case, we

need to extract x’s value and next before we can decref(x). We need to give x->next

to the recursive call, so as with length(), we get a new reference to it before we can call

recursively. In the recursive call, we transfer() the accumulator to the recursive call, so

we shouldn’t decref() that reference.

If you want to concatenate two borrowed lists, you can use this function:

list concat(borrows list x, borrows list y)

{

 if (is_error(x) || is_error(y)) {

 return 0;

 }

 if (is_nil(x)) {

 return transfer(incref(y));

 } else {

 return new_link(x->value, concat(x->next, transfer(incref(y))));

 }

}

The only reference counting related part of it is remembering that we have only

borrowed y, so we cannot give it away. We are giving a reference away when we return it

or when we give it to a function that takes the argument, so in both cases, we need to get

a reference to y first.

A concatenation function that takes ownership of the lists would look like this:

list concat(takes list x, takes list y)

{

 if (is_error(x) || is_error(y)) {

 decref(x); decref(y);

 return 0;

 }

Chapter 15 Reference Counting Garbage Collection

492

 if (is_nil(x)) {
 decref(x);
 return transfer(y);
 } else {
 int value = x->value;
 struct link *next = incref(x->next);
 decref(x);
 return new_link(value, concat(transfer(next), transfer(y)));
 }
}

�Adding a Compiler Extension (Not Portable!)
The code for decref()’ing all arguments that a function “takes,” scattered throughout
functions, can make the code harder to read. There isn’t any way around it if we take
ownership of a reference we are responsible for decrementing it unless we give it away.
Still, some compilers, at least clang, gcc, and icc that I know of, have an extension that
makes it a little easier. This is not standard C, but if you are writing code for a specific
compiler, and you know that it doesn’t have to compile elsewhere, you can exploit it.
Very briefly, I will give an example here.

The extension I have in mind is __attribute__((cleanup(f))) that, if you place
it where you declare a variable, will tell the compiler to call the function f() with the
address of the variable, when the variable goes out of scope. We will use it for lists, so we
can define

void list_cleanup(struct link **x)
 { decref(*x); }
#define autoclean_list \
 list __attribute__((cleanup(list_cleanup)))

The callback function will be called with the address of the variable, and since we
are working with lists, which are struct link * pointers, the address will be a pointer
to those, so struct link **. When the callback is called, we want to decrement the
variable’s value, what it points at, since that is the pointer to the link. That is what list_
cleanup() does. The autoclean_list macro defines a new type, autoclean_list, that is
a list with the callback attribute. Declare a variable as autoclean_list, and the callback

will be called when the variable goes out of scope.

The list x here

Chapter 15 Reference Counting Garbage Collection

493

autoclean_list x = new_link(1, new_link(2, NIL));

will automatically be decremented (and freed) when x goes out of scope.

The compiler extension doesn’t work for function arguments—which would

otherwise be nice for our purposes—but it does work for local variables. To use it with

function arguments, we can reassign parameters to local variables. A version of new_

link() that automatically deletes tail in case of allocation errors could look like this:

list new_link(int head, takes list tail_)

{

 autoclean_list tail = tail_;

 if (is_error(tail)) return 0;

 list new_link = malloc(sizeof *new_link);

 if (new_link) {

 struct link link_data = {

 .refcount = 1,

 .next = incref(tail),

 .value = head

 };

 memcpy(new_link, &link_data, sizeof *new_link);

 }

 return transfer(new_link);

}

We need to incref(tail) when we add it to the link, rather than transfer(tail),

since it will be decref()’ed when the function returns.

We don’t get much out of it with new_link(), but consider length():

int length_rec(takes list x_, int acc)

{

 autoclean_list x = x_;

 if (is_nil(x)) {

 return acc;

 } else {

 return length_rec(incref(x->next), acc + 1);

 }

}

Chapter 15 Reference Counting Garbage Collection

494

Now we get rid of the code for getting x->next before we call recursively, since

decref(x) isn’t called until x goes out of scope, which doesn’t happen until after we have

made the function call. So, the recursive case gets more natural code. The same is the

case for reverse() and concat():

list reverse_rec(takes list x_, takes list acc_)

{

 autoclean_list x = x_, acc = acc_;

 if (is_error(x) || is_error(acc)) return 0;

 if (is_nil(x)) {

 return incref(acc);

 } else {

 return reverse_rec(incref(x->next),

 new_link(x->value, incref(acc)));

 }

}

list concat(takes list x_, takes list y_)

{

 autoclean_list x = x_, y = y_;

 if (is_error(x) || is_error(y)) return 0;

 if (is_nil(x)) {

 return incref(y);

 } else {

 return new_link(x->value,

 concat(incref(x->next), incref(y)));

 }

}

Simply by assigning the input to local variables of type autoclean_list, we

automatically insert decref() at every exit point of the functions. We do not need to

worry about accessing links after we have decref()’ed them—that doesn’t happen

because we do not decref() them as long as they are in scope.

The tail recursion optimization will not be applied, at least not on the compilers I

have checked it on, so you will suffer some in speed efficiency if you take this approach,

though. Because of that, and because it will no longer be standard-compliant C, this is

not an approach I will recommend, but now you know that the possibility exists.

Chapter 15 Reference Counting Garbage Collection

495

�A Generic Reference Counter
With a reference counter for integers and lists under our belts, we might ask ourselves

if we could implement generic code for reference counting garbage collection, and

the answer, not surprisingly, is yes. All our tricks for generic data structures will work

for adding a reference counter to user data. We can embed a counter in our data,

and if it is at the top of a struct, we can cast, and if it isn’t, we can use the struct_

ptr(p,type,member) macro from Chapter 14. To learn something new, however, we will

take a different approach, where we can also make the reference counter data structure

opaque to the user. We will provide the following interface:

void *rc_alloc(size_t size, void cleanup(void *, void *));

void *incref(void *p);

// Use this one when decref'ing from a callback

void *decref_ctx(void *p, void *ctx);

// Use this one otherwise

static inline void decref(void *p)

{ decref_ctx(p, 0); }

where we only expose reference counted memory through void pointers. If you want

reference counted memory, you allocate it with rc_alloc() that takes a callback for

freeing memory as the second argument. That function will be called with the memory

you need to free plus a “secret” data structure we use to avoid recursion when freeing

cascades to free other objects. The incref() and decref() functions work as before, but

there is a second decref_ctx() function for when you decrement from a callback. If you

call this version, with the second argument to the callback, you avoid recursion.

To make our code easier to follow, we will still use these macros, but do keep in mind

that for a general user interface, we probably want better names.

// Annotation macros

#define borrows

#define takes

#define transfer(x) x

Those are all the functions and macros we expose in a header file. The rest of the

functionality, we hide away in a .c file, so we can change it as we see fit.

Chapter 15 Reference Counting Garbage Collection

496

The data we need to represent a reference counter must reside somewhere in

memory, but the addresses we provide the user are theirs to do with as they please, so

we cannot put the addresses there. Instead, we will put our bookkeeping information

before those addresses. In effect, we are placing reference counters at the top of a

structure, except that we do not need a structure. The user doesn’t have to use structs

but can reference count any data—for example, strings—and we do not need the user to

know anything at all about how we handle bookkeeping. We will allocate memory, with

malloc(), put our bookkeeping information at the first addresses of the memory we get,

and then return a pointer to the memory after that data.

Here, we have to be careful, and I feel that I must stress this because I have seen

people forget it countless times. If you do this trick, and you give a user an address

higher than the one you got from malloc() yourself, you have to consider alignment. The

address we get from malloc() is guaranteed to be such that any data structure can be

placed there. That isn’t also true for any offset from that address. If we write a function

that puts some information at the first addresses and then returns an offset, we must

make sure that the user’s data can reside at that offset. Otherwise, on some architectures,

and for some data, our reference counters will break. Debugging why is going to be hell

on Earth.

If your compiler supports C11, and that standard is nine years old at the time

of writing so I think it should, it is easy to get right. Then, there is a type, defined in

<stddef.h> called max_align_t, that is guaranteed to have the maximum alignment

constraints of any type. If a max_align_t can sit at an address, then anything can. We

can combine max_align_t with a flexible array member (we used those extensively in

Chapter 10 for the same purpose). If we put an empty array with type max_align_t[]

after our data, the offset it gets will be valid to return, regardless of what data the user

wants reference counted.

If you do not have max_align_t because you are using a compiler for an earlier

version of the C standard, then I don’t think that there is a portable way to work out what

the maximum alignment is from within your program. There is a reason they added

the type to the standard, after all. If you cannot get the information out of your system’s

documentation, a probabilistic approach would be to malloc() a lot of small memory

blocks and check how many lower bits are zero. With malloc(), you are guaranteed to

get addresses that are maximally aligned, and if it has a non-zero bit somewhere, that

is higher than the maximum alignment. This, of course, is not an optimal approach, as

you could get unlucky and infer a higher alignment than you need. But I am not aware of

Chapter 15 Reference Counting Garbage Collection

497

anything better that you can do if you don’t get the information from the documentation.

I will assume that we have a C11 compiler and that we can use max_align_t.

Our reference counter will look like this:

struct refcount {

 union { size_t rc; void *stack; };

 void (*cleanup)(void *, void *);

 max_align_t user_data[];

};

The rc member is the counter, the cleanup() pointer is for the cleanup callback,

and the user_data[] array is there for alignment. The stack pointer is the one we will

use to avoid recursing when we delete objects, and I will explain it later. The rc and

stack variables are in an anonymous union, since we will never use them both at the

same time. We use rc while we have references to the object and stack when we are

deleting them. Putting them in a union saves space. On my computer, pointers and

size_t are 8 bytes. With rc and stack in a union, the entire struct takes up 16 bytes,

which also happens to be the alignment constraint of max_align_t. If you want to know

that the maximum alignment is on your machine, you can include <stdalign.h> and

use alignof(max_align_t). It might differ from mine, but on my computer, the 16 bytes

I use for reference counting is the minimal possible memory I can use if I want to add

bookkeeping to general data.

If we put our reference counting data before the user data, we need operations to

move back and forth between the addresses. We can use the user_data member to get

the user’s data, and we can use struct_ptr() to get the reference counting data:

#define struct_ptr(p,type,member) \

 (type *)((char *)p - offsetof(type, member))

#define refcount_mem(p) \

 struct_ptr(p, struct refcount, user_data)

#define user_mem(rc) \

 (void *)(rc->user_data)

When we allocate memory, we allocate the number of bytes the user wants plus the

size of the reference counter data, initialize the reference counter, and return the user

data:

void *rc_alloc(size_t size, void (*cleanup)(void *, void *))

Chapter 15 Reference Counting Garbage Collection

498

{

 struct refcount *mem = malloc(sizeof *mem + size);

 if (!mem) return 0;

 mem->rc = 1;

 mem->cleanup = cleanup;

 return user_mem(mem);

}

With flexible array members, sizeof of a struct won’t necessarily give us the location

of the array, whereas offsetof() will, so you could also use

#define RCSIZE offsetof(struct refcount, user_data)

void *rc_alloc(size_t size, void (*cleanup)(void *, void *))

{

 struct refcount *mem = malloc(RCSIZE + size);

 if (!mem) return 0;

 mem->rc = 1;

 mem->cleanup = cleanup;

 return user_mem(mem);

}

I wouldn’t worry about that, however. When there is a difference between sizeof

and the offset of a flexible array member, it is because of alignment. It happens when the

array has lower alignment constraints than the struct itself. That cannot happen with

max_align_t, so sizeof(struct refcount) should be the same as offsetof(struct

refcount, user_data). The padding at the end of a structure is there to make alignment

work, and it isn’t necessary when we explicitly go for alignment to max_align_t.

There is nothing new in incref(). It works exactly as before, except that we need to

adjust the address we get as input to get to the reference counting metadata. We get a

pointer to the user’s data, and we should return the same, but we need the address of the

reference counter to update it.

void *incref(void *p)

{

 if (!p) return p;

Chapter 15 Reference Counting Garbage Collection

499

 struct refcount *mem = refcount_mem(p);

 mem->rc++;

 return p;

}

Because I want to avoid recursion when deleting objects—we don’t want to run out

of stack space, after all—there is more work in decrementing. Here, the idea is to use the

embedded stack variable that we are free to use once we no longer need the counter.

If we call decref_ctx(p,x), we use x as a pointer to a stack of objects to be deleted. If x

is NULL, we have a top-level deletion, and we will delete the object. If x isn’t NULL, we

simply put the object on the stack to be deleted later.

We use the function cleanup() for deleting objects:

void cleanup(struct refcount *stack)

{

 while (stack) {

 if (stack->cleanup)

 stack->cleanup(user_mem(stack), stack);

 struct refcount *next = stack->stack;

 free(stack);

 stack = next;

 }

}

It will iteratively delete objects as long as there are some on the stack, but before

it deletes, it calls the user’s callback. If the user remembers to use the decref_ctx()

function for decrementing, the recursive deletion will go on the stack. Otherwise, the

user’s objects are still deleted, but with recursive calls to cleanup() via decref().

The decref_ctx() decrements the counter, and if it has to delete, it will do one

of two things. If it has a second argument, I call it ctx for “deletion context,” it will put

the object on the cleanup stack. When that happens, we are already in the process of

deleting, and putting the object on the stack schedules it for later deletion. If ctx is

NULL, we immediately start a cleanup of the object.

Chapter 15 Reference Counting Garbage Collection

500

void *decref_ctx(void *p, void *ctx)

{

 if (!p) return p; // accept NULL as free() would...

 struct refcount *mem = refcount_mem(p);

 if (--mem->rc == 0) {

 // change the memory for rc/stack to a NULL stack

 mem->stack = 0;

 if (ctx) {

 // Schedule for deletion

 struct refcount *stack = ctx;

 mem->stack = stack->stack;

 stack->stack = mem;

 } else {

 // Start cleanup

 cleanup(mem);

 }

 return 0; // reference is now gone...

 }

 return p;

}

�Search Trees with Reference Counting
Let us take our fancy new generic reference counter for a spin by implementing

immutable search trees. An immutable tree consists of immutable nodes, and an

immutable node is one where all of the value and the left and the right subtrees are

const:

struct node {

 int const val;

 struct node * const left;

 struct node * const right;

};

Chapter 15 Reference Counting Garbage Collection

501

We are going to use reference counting on the nodes, but we do not need to embed

any counter information in them when we use the generic reference counting functions.

As with the lists earlier in the chapter, we want to distinguish between “empty”

and “error,” and we will use NULL pointers to indicate that some allocation error has

occurred. This means that we have to use a real object for empty trees, and since all

empty trees are alike, we can use a global object for this. However, if we use reference

counting on nodes, and we intend to use empty trees as a kind of nodes with no special

cases, then the empty tree node must be allocated with the rc_alloc() function. We

cannot do this for a global variable, but we can take the approach we did with empty lists

and have a function that gives us a special address that represents the empty tree. It will

hold a static variable that we cannot initialize where we define it, but we can check if it is

NULL, and then initialize it, before we return it.

struct node *get_EMPTY(void)

{

 static struct node *empty_node = 0;

 if (!empty_node) empty_node = rc_alloc(sizeof *empty_node, 0);

 if (!empty_node) abort(); // nothing works without it

 return empty_node;

}

We can use a macro to get new references to the empty tree and predicates to test if a

node is empty or an error, just as we did for lists.

#define EMPTY incref(get_EMPTY())

static inline

bool is_empty(borrows struct node *t)

{ return t == get_EMPTY(); }

static inline

bool is_error(borrows struct node *t)

{ return t == 0; }

We do not initialize the node part of the empty tree, because we do not intend to use

it as a proper node. The purpose of the object is to indicate an empty tree and nothing

more. For real nodes, of course, we need initialization, and a function for that can look

like this:

Chapter 15 Reference Counting Garbage Collection

502

struct node *new_node(int val,

 takes struct node *left,

 takes struct node *right)

{

 struct node *n = 0;

 if (is_error(left) || is_error(right)) goto done;

 n = rc_alloc(sizeof *n, free_node);

 if (!n) goto done;

memcpy(n,

 &(struct node) {

 .val = val, .left = incref(left), .right = incref(right)

 },

 sizeof *n);

done:

 decref(left); decref(right);

 return n;

}

The control flow is a little different from what we have seen before, but it is this

way, so I only have one exit point from the function, which makes it easier for me to

remember to decref() the two tree arguments the function takes. The result will be

the node n that we keep NULL until we have passed the points where errors can occur.

If either input tree is an error, we jump to the end of the function, at label done, and

decref() both trees. At least one of them will be NULL, but decref() can handle that.

If we cannot allocate memory for n, we also jump to done, where we decref() the two

trees and return NULL (which n will still be). If we make it through the error test and

allocation, then we create a node and move the data into the newly allocated memory.

Here, we incref() the two trees. If we didn’t, we would lose them before we return,

when we decref() them. If we didn’t incref() them here, we would need a separate exit

point for failure and success. It could look something like this:

void free_node(void *p, void *ctx); // callback (see below)

struct node *new_node(int val,

 takes struct node *left,

 takes struct node *right)

Chapter 15 Reference Counting Garbage Collection

503

{
 if (is_error(left) || is_error(right)) goto error;

 struct node *n = rc_alloc(sizeof *n, free_node);
 if (!n) goto error;

 memcpy(n,
 &(struct node) {
 .val = val,
 .left = transfer(left),
 .right = transfer(right)
 },
 sizeof *n);

 // success
 return n;

error:
 decref(left); decref(right);
 return 0;
}

As long as we remember to decrement the references, or give them away, through
any path through the function, we are fine. But you cannot both give them to the new
node and decref() them. I find the first version easier to read, but your mileage may
vary.

The callback for the rc_alloc() function looks like this:

void free_node(void *p, void *ctx)
{
 struct node *n = p;
 decref_ctx(n->left, ctx);
 decref_ctx(n->right, ctx);
}

When a node reaches reference count zero, we get it here, as a void pointer. It points
at a struct node, since we allocated it as such, so we can cast it. To free it, we must
decrement the subtrees to release the reference that this node has to them. We use the
ctx argument we get when the function is used as a callback, so the reference counting

code can avoid recursive calls.

Chapter 15 Reference Counting Garbage Collection

504

A contains() function on these trees is simple to implement. We can try a

borrows version, under the assumption that a user doesn’t want us to delete a tree

simultaneously with querying it:

bool contains(borrows struct node *tree, int val)

{

 assert(!is_error(tree));

 if (is_empty(tree)) return false;

 if (tree->val == val) return true;

 if (val < tree->val) return contains(tree->left, val);

 else return contains(tree->right, val);

}

Because we borrow the reference, there is nothing unusual in the function. There is

no incref() or decref() necessary, since we should not decrement borrowed nodes,

and we are not returning a node that would have needed a new reference.

The usage pattern of contains() is likely to be something like

if (contains(tree, val)) { /* do stuff */ }

so borrowing is fine, but with insert() we are more likely to write code such as

t = insert(t, val);

which tells us that insert() should probably take ownership of its input. We are

implementing immutable trees, so we are not getting t back in a modified form.

Whatever we get back from the function call is a new tree that holds the elements from

the old tree plus val. If we do not get the old tree back, we have lost a reference to it, and

we haven’t decremented it. We cannot write

t = insert(decref(t), val);

since that might free t before insert() gets to work with it, so instead we must make

insert() handle the decrementing. So, we will implement insert(), so it takes its tree

argument:

struct node *insert(takes struct node *tree, int val)

{

 if (is_error(tree)) return 0;

 if (is_empty(tree)) {

Chapter 15 Reference Counting Garbage Collection

505

 decref(tree);

 return new_node(val, EMPTY, EMPTY);

 }

 if (val == tree->val) return transfer(tree);

 int tval = tree->val;

 struct node *left = incref(tree->left);

 struct node *right = incref(tree->right);

 decref(tree);

 if (val < tree->val) {

 return new_node(tree->val,

 insert(transfer(left), val),

 transfer(right));

 } else {

 return new_node(tree->val,

 transfer(left),

 insert(transfer(right), val));

 }

}

The two base cases are error handling, where tree is NULL, and we return NULL,

and an empty tree, where we decrement tree and return a new node. Since we

decremented the input, we are okay with the ownership, and since new_node() gives us a

new reference, we are returning a fresh reference to the user, so we are also fine there. If

we find that the value is already in the tree, we can return tree. We own a reference to it,

so we can give it to the caller. In the remaining two cases, we will create a new node, with

the value we have in tree, one of the existing subtrees, and the result of a recursive call

for the remaining tree. Since we intend to give the subtrees to either the new node or the

recursive call, we need new references to them. We own a reference to tree, but not its

subtrees, so we must incref() them to get our own references. After that, we can safely

decref(tree), since the trees we own references to cannot be deallocated. After that, it

is a straightforward recursive call in the correct branch.

When removing values, we need to get the rightmost value in the left tree in the

general case. We cannot modify the node we find there in any case, so we might as well

just get the value in that tree, and for that, we can borrow references:

Chapter 15 Reference Counting Garbage Collection

506

int rightmost_value(borrows struct node *tree)

{

 assert(!is_error(tree) && !is_empty(tree));

 while (!is_empty(tree->right)) tree = tree->right;

 return tree->val;

}

For the same reasons as for insert(), we want delete() to take ownership of its

input tree. We want to be able to write

t = delete(t, val);

to “update” an otherwise immutable tree t. The function can look like this:

struct node *delete(takes struct node *tree, int val)

{

 if (is_empty(tree)) return transfer(tree);

 int tval = tree->val;

 struct node *left = incref(tree->left);

 struct node *right = incref(tree->right);

 decref(tree);

 if (val < tval) {

 return new_node(tval, delete(transfer(left), val), transfer(right)

 } else if (val > tval) {

 return new_node(tval, transfer(left), delete(transfer(right), val)

 } else {

 if (is_empty(left)) { decref(left); return transfer(right); }

 if (is_empty(right)) { decref(right); return transfer(left); }

 int rmval = rightmost_value(left);

 return new_node(rmval, delete(transfer(left), rmval),

 transfer(right));

 }

}

Chapter 15 Reference Counting Garbage Collection

507

We reply to an error with a NULL pointer, and if we get an empty tree, we give it back.

Otherwise, we are going to return a new node where we have modified either the left or

right tree, so we need new references to the subtrees and then decref() the reference we

have to tree. Searching left or right to find the node we should delete is straightforward.

We create a node that we will hold one of the existing subtrees, which we give to it, and

the result of a recursive call, which we give the reference to the other tree. When we

have the node we should delete, if either subtree is empty, we decrement that tree and

give the other to the caller. Otherwise, we get the value in the rightmost node in the left

tree. We are only lending left to rightmost_value(left), so we still have the tree after

the call. With the rmval in hand, we create a new node with that value, we give left to a

recursive delete(), and we give right to the new node. The new node is the result.

�Circular Structures?
What happens if you have data with a circular structure, for example, circular lists?

Can you still use reference counting? The short answer is no. If you want to replace all

of your pointers with reference counting pointers, you cannot free memory with cyclic

dependencies. Objects that refer to each other in a cyclic structure will never reach count

zero—at least not unless you explicitly break the cycle, which is something you probably

want to avoid, as that requires the global knowledge of the data structure that we use

referencing counting to avoid having.

In many data structures, however, we can have circular dependencies without this issue.

There, the trick is to mix reference counting pointers and “raw” or “weak” pointers. For

example, if you want to add parent pointers to the nodes in your search trees, you introduce

a circular dependency from a node to its children and from the children to the node. But

you can use a raw pointer for the parent, for example. Then the reference counter will keep

children alive as long as there is a parent that holds a reference to them, but the children will

not keep the parent around. If you choose such a strategy, you will have to deal with parents

disappearing from children, if that is a problem. If a child can survive longer than a parent,

you might, for example, want the deletion callback of a node to set the children’s nodes’

parent pointers to NULL. It isn’t elegant, but it gets the job done.

Chapter 15 Reference Counting Garbage Collection

508

There are more advanced garbage collection strategies than reference counting and

strategies that deal with cyclic dependencies, but they are more complex and beyond the

scope of this book. Reference counting gets most of the job done, with little effort and

little overhead. It is the method of choice for many applications, including the runtime

system of many programming languages. If you find that you need a little extra in terms

of memory management, it should be the first strategy you explore.

Chapter 15 Reference Counting Garbage Collection

509
© Thomas Mailund 2021
T. Mailund, Pointers in C Programming, https://doi.org/10.1007/978-1-4842-6927-5_16

CHAPTER 16

Allocation Pools
In the last chapter in the book, we will implement our own memory allocation routine.

We won’t implement the full generality of malloc() and friends. There is rarely a need

to try to replicate something we already have code for, presumably optimized and

thoroughly tested. Instead, we will implement allocation routines optimized for cases

where we need to allocate many equally sized objects, and here we can improve upon

the performance of the general code that needs to handle the allocation of objects of any

size.

There is some overhead to allocating memory, even though malloc() is usually

very fast. It might involve a system call, and those can be expensive, although with most

runtime systems, the allocation and free() functions usually have a pool of memory

that they can hand out memory from, which alleviates that problem. Still, to keep

track of which memory is in use and to correctly handle that you get the right size of

memory blocks, and free the right size again, it involves some bookkeeping. A common

case, however, is that you have a data structure where you need multiple objects of the

same size, like links in a linked list or nodes in a tree. For such an occurrence, we can

implement a pool of memory, where we hand out blocks of that size each time we need

one. We do not need to search for a block of memory of the right size because all our

blocks have the same size, so any free block will do. We need to get memory for the pool

of blocks, of course, and for that, we need malloc(), but as long as we allocate large

chunks of memory, we can minimize the expensive allocations and use the cheap ones

most of the time.

If you use such an allocation pool with a data structure, you get another benefit on

top of it. When you are done with the data structure and need to free it, you do not need

to free all the objects from the pool individually. You don’t have to, for example, traverse

a tree to free all its nodes, as you would with free(). Instead, you can free the allocation

pool as a whole and that way free the memory that the tree’s nodes use.

So let’s dig into implementing an allocation pool.

https://doi.org/10.1007/978-1-4842-6927-5_16#DOI

510

�A Simple Pool for Tree Nodes
We start with the simplest situation. Assume that we have a struct node that we need

a pool for, and assume that we have a cap on how many nodes we will need. If we use

nodes in a tree such that we only allocate and never free them—not until we free the

entire tree and can free the allocation pool, at least—we can implement an allocation

pool similarly to how we implemented the simplest dynamic array in Chapter 9. We

allocate a chunk of memory that can hold a fixed number of nodes, and every time we

need a new, we get the next free block. The struct for the allocation pool looks like the

struct for dynamic arrays:

struct node_pool {

 size_t size, used;

 struct node *pool;

};

When we allocate a new pool, we allocate memory for this struct and a block of

memory for struct node objects:

struct node_pool *new_pool(size_t capacity)

{

 struct node_pool *pool = malloc(sizeof *pool);

 if (!pool) return 0;

 pool->pool = malloc(capacity * sizeof *pool->pool);

 if (!pool->pool) { free(pool); return 0; }

 pool->size = capacity;

 pool->used = 0;

 return pool;

}

When we free a pool, we need to free the block of memory that holds the nodes and

then the struct node_pool itself:

void free_pool(struct node_pool *pool)

{

 free(pool->pool);

 free(pool);

}

Chapter 16 Allocation Pools

511

Finally, when we need a node, we get the next free block in the pool:

struct node *node_alloc(struct node_pool *pool)

{

 if (pool->used == pool->size) return 0; // Pool is used up

 return &pool->pool[pool->used++];

}

If we need more nodes than we allocated memory for, we are out of luck. It is not too

bad; there are many applications where we know how many nodes of a tree, or links in a

list, that we need a priori. But it is not most of them, so it would be better if we can grow a

pool if we need to.

�Adding Resizing
The natural instinct when we have to grow an array is to use realloc(). Repress that

instinct for memory pools. When we hand out nodes from our allocation pools, we are

handing out addresses into the array in the pool. If we realloc() that array, we have to

copy the data to new memory locations. The pointers we have already handed out won’t

be updated, however. They will still point into the original memory buffer. If you move

an object in memory, all the pointers to it have to be updated to its new address. Finding

and updating all pointers to an object’s address is not for the faint-hearted, and not

something I will suggest that you ever attempt. It is, practically, impossible.

We need to grow our memory pool without moving any of the existing objects.

That is not really a problem, though, as long as we don’t need to store the objects in

contiguous memory. We need to do that for arrays, but we don’t need memory pools to

behave like arrays, after all, so we are not limited in this way. If we need to enlarge the

pool, we can allocate a new chunk of memory for more nodes and start to take them

from there. That chunk can sit anywhere in memory, as far as we are concerned.

So, we can split a pool into several sub-pools, where each sub-pool is a chunk of

contiguous memory, but where the sub-pools are free to be located anywhere. We can

chain them together in a linked list to keep track of them that way.

Chapter 16 Allocation Pools

512

The most straightforward implementation of this idea is to have sub-pools contain a

pointer to the next sub-pool and an array of nodes of some constant time:

#define SUBPOOL_SIZE 1P24 // an arbitrary number...

struct subpool {

 struct subpool *next;

 struct node nodes[SUBPOOL_SIZE];

};

struct subpool *new_subpool(struct subpool *next)

{

 struct subpool *pool = malloc(sizeof *pool);

 if (pool) pool->next = next;

 return pool;

}

We could also use a flexible array member for the nodes in a sub-pool for the data

and precede it with a pointer to the next sub-pool and allocate them like this:

struct subpool {

 struct subpool *next;

 struct node nodes[];

};

struct subpool *new_subpool(size_t capacity,

 struct subpool *next)

{

 struct subpool *pool = 0;

 size_t size = offsetof(struct subpool, nodes) +

 (sizeof *pool->nodes) * capacity;

 pool = malloc(size);

 if (pool) pool->next = next;

 return pool;

}

With this approach, we can allocate sub-pools of different sizes and perhaps adapt

the size of the sub-pools to the algorithm we use them for at runtime. I will assume that

we use a constant size for each sub-pool, though.

Chapter 16 Allocation Pools

513

We still need to keep track of how many empty slots we have in a pool, but there is no

need to do this in the sub-pools. We will do the bookkeeping in the pool proper, where

we keep track of how many empty slots we have in the top sub-pool:

struct node_pool {

 size_t free_slots;

 struct subpool *subpools;

};

When we create a pool, we also create the top sub-pool, and then we set the free_

slots counter to SUBPOOL_SIZE to indicate that all the slots in the top sub-pool are free

for use:

struct node_pool *new_pool(void)

{

 struct node_pool *pool = malloc(sizeof *pool);

 if (!pool) return 0;

 struct subpool *subpool = new_subpool(0);

 if (!subpool) { free(pool); return 0; }

 pool->free_slots = SUBPOOL_SIZE;

 return pool;

}

When we free a pool, we need to free all the sub-pools. Since we are familiar with

how we run through a linked list, there is nothing complicated in that:

void free_pool(struct node_pool *pool)

{

 struct subpool *sp = pool->subpools;

 while (sp) {

 struct subpool *next = sp->next;

 free(sp);

 sp = next;

 }

 free(pool);

}

Chapter 16 Allocation Pools

514

It is when we allocate nodes that we need to manage the sub-pools. We will have the
invariant that the free slots are all in the top node and that the free slots sit at index free_
slots - 1 and down to zero. If we still have free slots left, the next we can give away will
thus sit at index free_slots - 1 in the top sub-pool, so we can return the address of that
node and decrement the free slots counter. If there are no free slots available, we must
allocate a new sub-pool first:

struct node *node_alloc(struct node_pool *pool)
{
 if (!pool->free_slots) {
 struct subpool *new_top = new_subpool(pool->subpools);
 if (!new_top) return 0;
 pool->subpools = new_top;
 pool->free_slots = SUBPOOL_SIZE;
 }
 return &pool->subpools->nodes[--(pool->free_slots)];
}

�Adding Deallocation
Can we also free nodes we have allocated from a pool? We can, of course, free all the
memory when we deallocate the entire pool, so the real question is whether we can mark
the memory a node occupies as free to be reused by a later allocation. We can do this by
chaining free node slots in a linked list, where allocations take the slot at the front of the
list, and deallocation prepends a newly freed node to the list.

We do not need to implement such a list of available slots as links containing nodes.
Any memory that is used as a node shouldn’t be in the free list, and any node in the list
shouldn’t be used as a node. So, we can embed the list in the same memory as the nodes
using a union that is either a linked list pointer or a node:

union node_free_list {
 union node_free_list *next_free;
 struct node node;
};
struct subpool {
 struct subpool *next;
 union node_free_list nodes[SUBPOOL_SIZE];

};

Chapter 16 Allocation Pools

515

When we allocate a new sub-pool, it will consist of SUBPOOL_SIZE free nodes, and

we should chain these into a free list. If we run through all the slots in the nodes[] array,

interpret them as free list pointers in the union, and point them to the address of the next

index in the array, we will have chained them. For the last index, we will set next_free to

NULL to indicate that it is the last free slot.

struct subpool *new_subpool(struct subpool *next)

{

 struct subpool *pool = malloc(sizeof *pool);

 if (!pool) return 0;

 // chain sub-pools

 pool->next = next;

 // chain free node-slots

 for (size_t i = 0; i < SUBPOOL_SIZE - 1; i++)

 pool->nodes[i].next_free = &pool->nodes[i + 1];

 pool->nodes[SUBPOOL_SIZE - 1].next_free = 0;

 return pool;

}

The pool proper will have a pointer to the front of the free list, and when we create a

new pool, we set the free pointer to the first index in the top sub-pool. That index is the

first free slot in the chain we created for the sub-pool.

struct node_pool {

 union node_free_list *next_free;

 struct subpool *subpools;

};

struct node_pool *new_pool(void)

{

 struct node_pool *pool = malloc(sizeof *pool);

 if (!pool) return 0;

 struct subpool *subpool = new_subpool(0);

 if (!subpool) { free(pool); return 0; }

Chapter 16 Allocation Pools

516

 pool->subpools = subpool;

 pool->next_free = &subpool->nodes[0];

 return pool;
}

We do not need to change anything in the function that frees pools. We do not need

to iterate through the free list or handle the individual nodes in any way, so freeing a

pool is still just a matter of freeing all the sub-pools it contains.

void free_pool(struct node_pool *pool)
{

 struct subpool *sp = pool->subpools;
 while (sp) {
 struct subpool *next = sp->next;
 free(sp);

 sp = next;

 }

 free(pool);

}

To allocate a node from a pool, we can return the node at the front of the free list and

update the free list to point at the next in the chain. If the next_free pointer is NULL,

there are no available slots, and we must allocate a new sub-pool. Once we have done

that, we have a new list of free nodes that start at the first index in the sub-pool’s array.

struct node *node_alloc(struct node_pool *pool)
{

 if (pool->next_free == 0) {
 struct subpool *new_top = new_subpool(pool->subpools);
 if (!new_top) return 0;

 // Success, so add new pool to list

 new_top->next = pool->subpools;

 pool->next_free = &new_top->nodes[0];

 }

 struct node *node = &pool->next_free->node;
 pool->next_free = pool->next_free->next_free;

 return node;

}

Chapter 16 Allocation Pools

517

When we want to free a node, we can reinterpret the memory it holds as the union
type we use in the pool. It is memory of that type that we have handed to the user, and
while they have used it as a struct node, we are allowed to cast it back to its true form.1
If we interpret the memory as the union type, we can write to the next_free pointer in it
and that way put it at the front of the free list.

void free_node(struct node_pool *pool, struct node *node)
{
 union node_free_list *free_list =
 (union node_free_list *)node;
 free_list->next_free = pool->next_free;
 pool->next_free = free_list;
}

�A Generic Pool
If we can write an allocation pool for struct node objects, we can write it for any other
type, of course. But as with the other data structures we have considered in the book,
it is worthwhile considering one implementation that can handle all types. Can we
implement such a generic allocation pool that is oblivious to the concrete types we will
allocate memory from?

With the node allocation pools, we never explicitly exploited that the objects in the
pools were of any particular type, so it seems as if it should be straightforward to generalize
the code. And it is not that difficult. But we did exploit that we knew the underlying type
implicitly in a couple of ways, and now we need to handle that without the assistance of
the compiler. When we worked with arrays of struct node in the sub-pools, the compiler
worked out the size of the array for us and made sure that the alignment constraint for
nodes was satisfied. That is what we have to handle manually now.

We will handle raw memory, in the form of a buffer we access through a char *
pointer, in chunks of size block_size. We will compute this size, so it satisfies both size
and alignment requirements. What that means is the same as sizeof(T) means for

type T: if we can place an object at an address a, then we can also place one at a + i *

block_size for all integers i. In sub-pools, we will have a pointer to the next sub-pool

and a pointer to raw data:

1�As we know, we cannot always cast any type to any type, but the node from the pool started out
as a union, then was cast to the member type, so we are allowed to cast it back.

Chapter 16 Allocation Pools

518

struct subpool {
 char *data;
 struct subpool *next;
};

We won’t embed the data in the sub-pool this time. We could, but it would have to be
at an offset that is a multiple of block_size, so it would require some extra bookkeeping.
We wouldn’t be able to use a struct member for the data, as we could with the array of
nodes. Instead, we would have to allocate memory for both the pointer, SUBPOOL_SIZE
* block_size memory for the data, and some extra header, so we could access the data
at a multiple of block_size from the beginning of the sub-pool memory. This is not
impossible to do, but it is cumbersome. If we use a separate malloc() memory allocation
for the data, we know that the first address has maximum alignment and thus that we
can place any object there.

Thus, allocating a sub-pool now involves two calls to malloc(): one for allocating the
pool and one for allocating the data. The function looks like this:

struct subpool *new_subpool(size_t block_size,
 struct subpool *next)
{
 struct subpool *spool = malloc(sizeof *spool);
 if (!spool) return 0;

 spool->data = malloc(SUBPOOL_SIZE * block_size);
 if (!spool->data) { free(spool); return 0; }

 spool->next = next;
 chain_subpool(spool->data, block_size);

 return spool;
}

where the chain_subpool() is responsible for creating a linked list of free blocks.
We do not have a data structure for the blocks and the free pointers, as we are

working with raw memory now, but if block_size is large enough—and we will ensure
that it is—we can place void pointers in each block and chain them together like that:

void chain_subpool(char *data, size_t block_size)
{
 // We need a void ** so we can write a void * into each block.
 void **p = (void **)data + (SUBPOOL_SIZE - 1) * block_size;

Chapter 16 Allocation Pools

519

 *p = 0;

 for (size_t i = 0; i < SUBPOOL_SIZE; i++) {

 p = (void **)(data + i * block_size);

 *p = data + (i + 1) * block_size;

 }

}

We go through each block and cast its address to void **. If it is a pointer to a void

pointer, we can write a void pointer into it. So, we take the address of the next block,

computed as data + (i + 1) * block_size. Since data is a char pointer, we are getting

addresses block_size apart. It is a char * pointer we get out of this pointer arithmetic,

but we can write those into void pointers. If p is the address of a block, interpreted as

void **, then *p is a void pointer that we can write to, and that is where we write the

address of the next block. The code might be a little hard to decipher, but the result is

that for each of the blocks, the first sizeof(void *) of the block_size bytes holds an

address. In the last of the blocks, the value is a NULL pointer; we set it in the line *p = 0,

and for the remaining blocks, the address is the start of the next block.

The tricky part of making all this work is to have a block_size that will allow you to

both embed pointers in the blocks and allow you to place the objects you want the pool

to handle. There are two constraints that we must meet. The size of a block must be large

enough to both hold void * and the objects, so it must be at least MAX(sizeof(void *),

sizeof(T)) if you plan to put objects of type T in the pool. Blocks must also be aligned so

you can place both void * and T objects at the beginning of each, so the alignment must

be the maximum of the two type’s alignment: MAX(alignof(void *), alignof(T)).

(Remember that you need to include <stdalign.h> to get alignof().) To satisfy both

constraints, block_size must be a multiple of MAX(alignof(void *), alignof(T)) of

size at least MAX(sizeof(void *), sizeof(T)), and naturally we want the smallest such

multiple. The following function computes such a block size, where the type’s size and

alignment are in type_size and type_align:

#define MAX(a,b) (((a) > (b)) ? (a) : (b))

static inline

size_t aligned_block_size(size_t type_size, size_t type_align)

Chapter 16 Allocation Pools

520

{

 // The block size must be a multiple of align of size

 // at least min_size.

 size_t min_size = MAX(sizeof(void *), type_size);
 size_t align = MAX(alignof(void *), type_align);

 size_t block_size = ((min_size - 1) / align + 1) * align;

 return block_size;
}

To get the block size for objects of type T, you would use aligned_block_size

(sizeof(T),alignof(T).

Our plan is to have allocation pools for one type of object only, so we can compute

the block size when we create a pool and store it with the pool (together with the sub-

pool list and the free list):

struct pool {
 struct subpool *top_pool;
 size_t block_size;

 void *next_free;

};

We cannot write a function that takes a type as an argument, so we write one that

creates a pool based on the size and alignment values instead:

struct pool *new_pool_type(size_t type_size, size_t type_align)
{

 size_t block_size = aligned_block_size(type_size, type_align);

 // check size overflow...

 if (SIZE_MAX / SUBPOOL_SIZE < block_size) return 0;

 struct pool *pool = malloc(sizeof *pool);
 if (!pool) return 0;
 pool->top_pool = new_subpool(block_size, 0);

 if (!pool->top_pool) { free(pool); return 0; }

 pool->block_size = block_size;

 pool->next_free = pool->top_pool->data;

 return pool;

}

Chapter 16 Allocation Pools

521

This function looks much like the one from the previous section, except that we need

to ensure that we do not have a size overflow when we combine the SUBPOOL_SIZE with

the block_size, and we get the first free block in the free list as the address of the sub-

pool’s data.

It is, of course, more convenient if we can allocate a pool based on a type, and while

we cannot write a function that takes a type as an argument, we can write a macro that

does it. Therefore, we can write a new_pool() macro that takes a type as an argument, get

the type’s size and alignment specification, and call the new_pool_type() function with

those:

#define new_pool(type) new_pool_type(sizeof(type), alignof(type))

When we free an allocation pool, we must remember to free sub-pools’ data as well

as the sub-pool, but otherwise that function is straightforward.

void free_pool(struct pool *pool)

{

 struct subpool *sp = pool->top_pool;

 while (sp) {

 struct subpool *next = sp->next;

 free(sp->data);

 free(sp);

 sp = next;

 }

 free(pool);

}

When we hand out new memory blocks, and when we return them to the free list, the

free list is a linked list of void pointers. There is no information about what is at the other

end of a void *, so we must cast what we see there to manipulate it. To deliver the next

free memory block to the user, we can return the address that pool->next_free points

to, but to update the free list, we must also update pool->next_free so it now points at

the next block in the list. However, if next_free points at a memory block, that block is

free, which means that it should hold data that we can interpret as a pointer in the free

list. So we can cast pool->next_free to void ** and read the void * it points at. That

will be the address of the next free block, and we should update pool->next_free to

point there:

Chapter 16 Allocation Pools

522

void *pool_alloc(struct pool *pool)

{

 if (pool->next_free == 0) {

 struct subpool *new_top =

 new_subpool(pool->block_size, pool->top_pool);

 if (!new_top) return 0;

 pool->top_pool = new_top;

 pool->next_free = new_top->data;

 }

 void *p = pool->next_free;

 pool->next_free = *(void **)pool->next_free;

 return p;

}

When we return a block to the pool, we do the same in reverse. We take the memory

we are getting back and interpret it as void **. That means that we now consider it as

pointing to an address where we can write a pointer to the current free list, after which

we can update next_free to point to the now freed block.

void pool_free(struct pool *pool, void *p)

{

 void **next_free = (void **)p;

 *next_free = pool->next_free;

 pool->next_free = next_free;

}

Manipulating raw memory the way we do with the free lists here means that we have

to be super careful. But we made sure that the size and alignment constraints on blocks

allow us to put void * data at the beginning of each block, and since we are also careful

with casting when we read and write into blocks, we make it work.

We now have a generic allocation pool, from which we can obtain equal-sized blocks

of memory and return the blocks to when done using them. If we use the pool in an

algorithm, after which we can release all the memory blocks, we can do so as a single

operation, and we do not need to free them individually.

Chapter 16 Allocation Pools

523

We could try to extend our pool so it can handle variable-size memory blocks, but

that will add substantially to the bookkeeping, and we would end up implementing our

own version of the malloc()/free() runtime system we already have available. And

our solution would likely be inferior to a system that is highly optimized and tested by

thousands of users every day.

We could also consider improving the pool, so it deletes sub-pools when they are no

longer used. Again, however, I would discourage it. The implementation we currently

have doesn’t keep track of which sub-pool a block of memory is in, and doing that would

incur substantial bookkeeping overhead. Without knowing that, tracking when the last

memory block in a sub-pool is released is difficult.

No, I think this is as far as I would take an allocation pool. At least, I have never

taken it further, and yet I have managed to implement many data structures with custom

allocators for links, nodes, and whatnot. Now you can do so as well.

Chapter 16 Allocation Pools

525
© Thomas Mailund 2021
T. Mailund, Pointers in C Programming, https://doi.org/10.1007/978-1-4842-6927-5_17

CHAPTER 17

Conclusions
We have reached the end of the book, and by now, you know everything you need to

know to effectively use pointers in your programs. The basic idea behind pointers,

seeing them as addresses into memory, where the objects you want to manipulate

reside, is a simple one and an elegant solution to many programming issues. You can

use pointers to dynamically allocate memory as needed when you only know your needs

at runtime. You can use pointers to create recursive data structures—data structures

that contain instances of the same structure—such as linked lists and search trees. You

can use pointers to code as well, to parameterize your functions with behavior that a

function user can provide. You can use indirect references to functions to implement

polymorphic data structures, where behavior at runtime is determined by pointers to

functions.

Pointers are powerful, and with great power comes great responsibility. You have

to treat pointers with respect, or they will punish you. When you use pointers, you are

responsible for your own and your program’s safety. Misuse them, and you will suffer—

and it is so easy to misuse them. You set a pointer up to refer to a vital object in your

program. Somewhere else, you release the object because you think you no longer need

it. You still have a pointer to it, however, and should you ever be so unfortunate as to

access it again—and that easily happens—then destruction will rain down upon you.

In any serious C program, you need to use pointers, but you must be careful with them.

It takes experience to safely use pointers, and you will never get to the point where

you do not make mistakes. Still, you will make fewer over time and, as a general rule,

get better at fixing errors when you do make them. Even the best programmers make

mistakes, and programs that have run for decades still contain errors due to incorrect

memory usages. They have buffer overflows, memory leaks when the program does not

release objects it no longer uses, and dangling pointers referring to memory that is no

longer in a sound state. We humans do not appear to be smart enough to write flawless

programs, but with experience, we get better at it. We may never achieve perfection,

https://doi.org/10.1007/978-1-4842-6927-5_17#DOI

526

but we manage to write useful and (relatively) robust software nevertheless—even in

languages such as C.

You now know everything you need to know to effectively use pointers in your

programs. You know the conceptual model for pointers—the random access memory

model—and you understand the language constructions for creating pointers,

manipulating pointers, and accessing the data they point at. You know how we allocate

and deallocate memory, how you create data structures using pointers, and how to call

functions through pointers. You have seen examples of data structures where we exploit

both pointers to data and to functions. The rest is simply more of the same.

This book is too short to cover everything you will run into when you use pointers,

but that is okay. In the field where you write your programs, there will be specialized

cases, and you will work those out on your own, based on the principles you now know.

All it takes, from this point and onward, is experience and applying the techniques that

we have covered in new ways. I wish you the best of luck with this.

Chapter 17 Conclusions

527
© Thomas Mailund 2021
T. Mailund, Pointers in C Programming, https://doi.org/10.1007/978-1-4842-6927-5

Index

A
Abstract data structures, 421–428
Actual object, 61, 62
Address, 9–13, 86, 88, 92
aligned_alloc() function, 221, 228, 229,

440, 441
Alignment, 19–27
alignof(), 21, 519
Allocation functions, 220, 222, 229,

 321, 322, 451
Allocation pools

adding resizing, 511–514
deallocation adding, 514–517
struct node objects, 517
tree nodes, 510, 511

Arbitrary types, 82–85
Array

address, 92
arguments, 105, 123
bounds, 100
collections of objects, 91
const pointers, 91
declare, 92
function arguments, 93, 102–105
function parameters, 102
index swapping, 126
integers, 91, 93, 95, 97
integers/pointers, adding/

subtracting, 96
length, 93, 123

local variable, 124
memory layout, 15, 22, 94
memory location, 95
notations, 96
parameters, 125
pointers, 94, 98, 101, 102, 104, 124, 125
range, 99
reverse_pointers(), 127
sizeof(), 92, 98
struct, 22
terminal padding, 24
value, 92
while-loop solution, 126

Array solution
compact0() function, 129, 130
implementation, 128
non-zero element, 128
procedure, 128

Assignments
const and pointers, 59
pointers to pointers, 60

B
Big-endian/little-endian, 76
Binary search trees, 371
Bit pattern, 50, 69, 76, 144
Bucket sorts, 135

algorithm, 137
data structure, 137
function, 144

https://doi.org/10.1007/978-1-4842-6927-5#DOI

528

implementation, 135, 136, 142
least significant byte, 143
output array, 138
radix sort integers, 146
relative order, 141
reverse() call, 147
reversing an array, 146
segmenting, 145
split(), 144
strings, 140
unsigned numbers, 144
valid address, 146
variable, 143

Buffer overflow
character buffer, 190
out-of-bounds errors, 190
security holes, 191
snprintf(), 192
standard library, 193
strcmp() call, 191
strcpy(), 190
strlen(), 190
valid_password, 191

C
Callbacks, 416–418
Call by reference, 36–48
Calling function, 31, 38, 48, 427
calloc() function, 223–225
Call stack, 28, 92, 375, 376, 392, 394
Casting to links, 456–459
chain_subpool(), 518
Character variable, 21
char pointer, 74, 75, 78, 84, 89, 97, 98,

143, 148, 160
checked_realloc() macro, 246

Circular list, dummy head, 335, 336
Circular structure, 507
cleanup(), 499
Code generating macros

double_dynarray, 271
prototypes, 273
struct type, 270
TYPE, 271, 273
type-checker, 274
type-safe, 270

compact0() function, 129
Compacting words

char * arguments, 187
copy_word() function, 187
find_word(), 187
(*p)++ increments, 188
space-separated words, 189
stack-allocated buffer, 189
strings, 186

Compiler extension, 276, 280,
293, 296, 493

Computer memory hierarchy, 5
Concatenation function, 491
Constant data, 58
Constant integer, 56
Constant pointers, 58
const keyword, 53
Const and pointers

assignments rules, 59
code, 56
declaring types, 59
function, 56
illegal alias, 64
rule, 57
smuggling in illegal alias, 65

const qualifier, 80
Constructor, 433, 435
const variables, 54, 66

Bucket sorts (cont.)

INDEX

529

contains() function, 378, 504
Count sort, 135–137

D
da_init(), 242
da_resize() function, 280
Data buffer, 241, 285
Data interpretation, 70
Data structures, 137, 196, 201,

203, 220, 526
Declaring types, 59
decref() function, 482, 484
decref_ctx(), 499
delete_node() function, 469
Deletion, 373–375
Dereference pointers, 34, 82
Doubly linked lists, 334, 336–338
Dummy element, 329–333
Dynamically allocated memory, 28, 525
Dynamic arrays

address, 240
allocated memory, 243
allocation macros, 247
appending, 244, 248
da_dealloc(), 243, 248
da_resize(), 246
data pointer, 246
data structure, 239, 240
deallocating, 242
double size, 243
implementing, 240
initialization code, 241
length, 240, 242
maximum length, 246
memory buffer, 243
MIN() expression, 246
realloc(), 241, 243

resize function, 245
resizing code, 245
shrink, 249
struct dynarray variable, 248
structure, 246

Dynamic memory allocation, 14, 48, 220,
239, 287, 296

Dynamic memory management
aligned_alloc() function, 228
calloc(), 223–225
free(), 229
malloc() function, 220, 222, 223
realloc(), 225–228

dynarray() macro, 286

E
Empty list, 306, 307, 309, 310, 312, 319,

321, 322
Empty tree, 371, 373, 374
eratosthenes() function, 130
Event-driven systems, 416
Explicit pointer, 118
Explicit stacks, 392–399

F
Finding words

char pointers, 178
debug code, 181
design pattern, 184, 185
GEN_FIND_SKIP(), 184
isalpha()function, 177
isnumber() function, 183
iterator design pattern, 179
iterator termination, 179
literal strings, 179
NULL pointer, 180

INDEX

530

pointer to zero terminal, 181
skip function, 182, 183
zero terminal, 180

Floating-point number, 69, 71
Floating-point representation, 71
fold() function, 415
Frame pointer, 29–31
Freeing nodes, 384, 403
free_nodes() function, 393
Function arguments, 13, 102–105
Function parameters, 4, 36, 102, 286
Function pointers

abstract data structures, 421–428
arguments, 411
callbacks, 416–418
cast notation, 412
generating functions, 440–443
generic string iterator, 418–420
high-order functions, 413–416
int to int function, 412
polymorphic data

structures, 428–440
POSIX standard, 413
return type, 411
tagged pointers, 444–448
void to void function, 412

G
Gapped buffers

allocation function, 252
cursor index points, 254
reallocate buffer, 252
buffer size, 250
cursor position, 253
cursor, size, and gap, 257
data structure, 252

editing, 251
gb_back() macro, 256
grow_buffer() function, 255
growth function, 256
if-statement, 253
memmove() function, 258
move_back(), 258
offsets, 252
overlapping memory, 258
reallocate, 257
resize, 255
shrink_buffer(), 255
SIZE_MAX, 255
structure, 250
realloc(), 256
zero characters, 258

Generic allocation pool, 517–523
Generic data structure, 260, 449, 459, 470,

476, 495
Generic dynamic arrays

C preprocessor, 259
template mechanism, 259

Generic functions, 86
character pointers, 148
insertion sort, 154
integers and strings, 151, 152
memcpy() function, 150
pointer, 155
qsort(), 147
reverse() function, 148, 149
sorting algorithm, 154
swap_down() function, 154
swapping code, 154
swapping part, 149
type-cast, 151
type-checking, 155
typedef, 151
void pointers, 148

Bucket sorts (cont.)

INDEX

531

Generic lists, 450–456
Generic reference counter, 495–500
Generic string iterator, 418–420
Granularity, 445
grow_buffer() function, 255

H
Heap-allocated data structures, 477
Heap-allocated inlined array

add_points(), 300
allocate memory, 293
calling function, 302
calling variable, 300
checked_free_realloc(), 287
da_meta pointer, 288
data array, 296
data structures, 303
dynamic arrays, 286, 298
flexible array member, 287, 295
generic versions, 289
grow_dynarray_mem() function, 291
memory layout, 293
meta-information, 289
new_da() macro, 292
new_dynarray_mem() function, 290, 291
offsetof(), 296
pointer, 297
realloc(), 286
reference, 299
struct, 288, 294, 295
identical struct declarations, 293
typedef, 299
uninitialized pointer, 297
valid alignment, 296
void pointers, 303

Heap-allocated integers, 478
Heap-allocate lists, 322

Higher-order functions, 413–416
High-level programming languages, 2

I
Immutable data structures, 480
Immutable links, reference counting,

480–494
incref()/decref() functions, 495
Inlining macros

C preprocessor, 284
curly brackets, 279
da_resize() function, 280
do-while loop, 278, 280
dynarray() macro, 286
generated functions, 275
if-statements, 277, 278
initialization, 276
parentheses, 276
programming error, 275
realloc(), 281
shadowing variables, 282
size variables, 282
statement expressions, 276
status argument, 282
status parameter, 281
status variable, 278
anonymous struct, 275
typeof __ macro, 280
variadic, 284

insert() operation, 379, 389
Insertion sort, 362–364
Instruction pointer, 28, 29
Integer arrays, 96, 114
Integer dynamic array, 240, 271
Integers to strings

ASCII character, 166
digits, 168

INDEX

532

execution, 171
function, 165
implemented reversal, 169, 170
int_to_string() function, 172
neg_int_to_string(), 168
pointer, 173
pos_int_to_string(), 167
recursive algorithm, 171
recursive functions, 174
strategy, 165
strlen(), 170

Iterative functions, 390–392
Iterator design pattern, 179, 180, 196

J, K
Just-in-time compilation, 445

L
length() function, 483, 487
Level of indirection, 321–329
Linear time operations, 474
Linked lists, 305, 307, 312, 317, 318
Link operations

compilation unit, 340
connecting two links, 338, 339
external linkage function, 340
inline function, 339, 340
insert link y after link x, 341, 342
insert values, 342
unlinking x, 343, 344

List operations
concatenating x and y,

general case, 347, 349
concatenating x and y, both lists

are empty, 350, 353

concatenating x and y, x is empty,
350, 351

concatenating x and y, y is empty,
350, 352

contains() function, 347
drawback, 345
prepend/append, 345
reversing list, swapping next/prev

pointers, 354–356
termination condition, 346
unprocessed links, 357
versions, 345

Local variables, 28
access, 29
address, 8
allocate memory, 29
foo(), 31
memory, 31
stack, 13
stack frame, 28

Lower triangular matrix, 118, 119
Low-level languages, 2, 4

M
malloc() function, 220, 222, 223,

232, 509
malloc() memory allocation, 518
memcpy() function, 150, 485
Memory access, computational cost, 6
Memory allocation, 13–19
Memory, generic process, 6–9
Memory location, 4, 12, 35
Memory management, 1, 313, 316,

320, 452, 478, 480
Memory protection bits, 440
Merge sort, 364–367
Morris traversal algorithm

Integers to strings (cont.)

INDEX

533

freeing nodes, 403
in-order traversal, 399
parent pointer, 404–409
rightmost() function, 401
stree(), 403
threaded tree, 400, 401

move_point() function, 41
Multidimensional arrays

arrays of pointers, 121
definition, 106
function arguments, 116
index, 108
initialization, 106, 112
length, 118, 119
loop, 116
lower triangular matrix, 119
matrices, 108
memory layout, 111, 112, 119
pointer arithmetic, 111, 116
pointers, 114, 119
sequence of, 116
sizeof(), 118
sizes of objects, 114
triangular matrix, 118

munmap() function, 442

N
new_link() function, 477, 493
next_occurrence() iterator, 238
Non-empty list, 306
Non-overlapping

occurrences, 211
NULL pointers, 481

literal 0, 50
bit representation, 51
dereferencing, 49, 53
expression, 52

print_vector()’s, 53
representation, 50
stack-allocated object, 51
types, 49

O
Objects, 5, 9–13

memory locations, 20
size, 10, 26

Offsets, 252, 459–462
One-dimensional arrays, 106, 108, 110,

118, 119
Out-of-bounds errors, 100, 190

P
Padding, 23, 24
Pass by reference, 383–388
Persistent data structures, 480
Pointer arithmetic, 73, 77, 95, 111, 116
Pointers, 1, 306, 525

arrays, 101, 102
arguments to functions, 37
assignment, 60
big-endian and little-endian, 76
call by reference, 36–48
data interpretation, 72
dereferenced, 35
different types, 69, 79
interpret data differently, 70
lp and dp interpret, 71
memory addresses, 69
stores memory addresses, 33
types, 73

Pointer solution
addresses, 134
candidates, 130, 132

INDEX

534

implementation, 133
jump sizes, 130
non-zero numbers, 132
range, 133

Polymorphic
data structures

access members, 428
hierarchy of expression

classes, 431–440
memory layout, 429
requirements, 428
rudimentary object-oriented

programming, 428
single inheritance objects and

classes, 429–431
Polymorphism, 456
print_vector(), 47, 48
push()/pop() functions, 393

Q
qsort() function, 86, 87
Qualified types, 55, 80
Quicksort, 367–369

R
Radix sorting

algorithm, 135
implementation, 135

rc_alloc() function, 501
realloc(), 225–228, 511
Recursive data structures, 305, 375
Recursive deletion, 499
Recursive function, 487
Recursive operation, 373
Recursive solutions, 375

Refactoring, 389, 390
Reference counting

decref(), 480
incref(), 478

Reference counting
circular structure, 507
compiler extension, 493
generic code, 495–500
immutable links, 480–494
memory, 495
memory management, 480
metadata, 498
NULL pointers, 480
remembering, 491
search trees, 500–507

Register allocation, 8
remove_node() function, 467
Replacing strings

allocate memory, 218
assert(), 217
copy_substr() function, 210
deleting/inserting, 213
ensures, 214
in-place substitution, 214
modification functions, 218
substr_copy() calls, 215, 216
valid character, 217

Restricted pointers, 66–68
reverse() function, 149
rightmost(), 387, 406
rightmost() function, 401, 402
runlength_encode()

function, 176
Run-length encoding

implementation, 174
lossless compression, 174
runlength_encode()

function, 176

Pointer solution (cont.)

INDEX

535

skip() function, 175, 176
sprintf() function, 176

S
Search trees, 305, 371, 372, 463–476, 525

direct translation implementation,
377–383

pass by reference, 383–388
reference counting, 500–507

Selection sort, 359–362
Self-explanatory, 465
setjmp()/longjmp() functions, 395
Shadowing variables, 282
shortest() function, 47
sieve_candidates() function, 134
Sieve of Eratosthenes

array solution (see Array solution)
pointer solution (see Pointer solution)
procedure, 128

Signed arithmetic, 209, 238
Singly linked lists

allocation errors, 310
appending, 312, 313
concatenation, 316, 317
definition, 307
deleting, 319, 320
explicit operation, 308
freeing memory, 320
free_list, 309
implementation, 307
interface, 320
make_list() function, 313
NULL pointer, 310
pointer/link representation, 307
prepend, 313, 314
reversing, 317, 318
sizeof operator, 308

struct link, 311
undefined behavior, 312

sizeof(), 10, 21
sizeof(int), 74, 97, 98
Sizes, 9–13
Sorting doubly linked lists

algorithms, 358
insertion sort, 362–364
merge sort, 364–367
quicksort, 367–369
selection sort, 359–362

Stack-allocated memory, 13
Stack-allocated object, 51, 219
Stack frame, 28
Stack in action, 30
Stack pointer, 30, 31
Static/automatic memory

allocation, 219
strcpy() function, 202, 232
Strict alias rule, 83, 84
string_compare() function, 88
string_copy() functions, 236
String operations, 230–239
Strings

assign and increment
approach, 165

char sequence, 157
buffer of chars, 158
char * pointer, 161
copying, 161
immutable, 157
length, 159, 238
main() variable, 163
memory layout, 159
pointer arithmetic, 160
protocol, 157
range representations, 238
strcpy(), 160

INDEX

536

strlen(), 158
strlen_pointer(), 160
variable, 162
while-loop, 159, 164
x pointer, 162
zero byte, 164

strlen() function, 158, 233
strncmp() function, 211
strncpy(), 232, 258
Struct

memory layout, 18
variable, 18
pointers, 81

Sub-pools, 511–513, 517
Substrings

char buffer, 199, 200
copy function, 203, 204
data structure, 196
implementation, 204
iterator problem, 206
non-overlapping strings, 201
NULL and empty strings, 197
optimization, 201
overlapping, 202
pass by value, 196
qsort() function, 205
range representation, 196
reversal function, 201
standard output, 198
starting point, 195
strcpy() function, 202
substr objects, 198
reversing substr objects, 200
zero-terminated, 204
zero-terminated C string, 197
zero termination character, 195

swap_down() function, 154

T
Tagged pointers, 444–448
Tail recursion optimization, 386, 494
Tail-recursive functions, 390, 487
Threaded pointers, 401
Threaded tree, 400
Three-dimensional array, 110
transfer(), 485, 488, 491
Tree operations

contains, 372
deletion, 373–375
free, 375
insert, 373
recursive data structures/recursive

functions, 375–377
Two-by-three integer array, 115
Two-by-two array, 106
Two-dimensional arrays, 108, 114
Type-checker, 69

U
Undefined behavior, 70, 238
Unions, 25, 26, 80
User-provided functions, 451

V
Variable length array, 92
Variadic macros, 284
vector_length() function, 52
Virtual functions, 429
Virtual machines, 444
Virtual memory, 7, 224
Void pointers, 79, 85–89

* dynamic array, 263
define/initialize, 262
generic type, 260

Strings (cont.)

Index

537

integers, 264
local variables, 262
optimization, 263
testing size overflow, 260
type-checking, 264, 265
variables, 262

W
Word iterators

compacting version, 210
copy_substr() function, 209
explicit, 207
find_word() function, 206
iterator function, 207

non-overlapping
occurrences, 211, 212

NULL pointer, 207
NULL_SUBSTR, 208
occurrences, 211, 213
skip_word() function, 206
strncmp() function, 211

X, Y
x64 architecture, 447

Z
Zero-sized arrays, 241, 245, 247

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Introduction
	Chapter 2: Memory, Objects, and Addresses
	The Memory of a Generic Process
	Objects, Sizes, and Addresses
	Memory Allocation
	Alignment
	Call Stacks and the Lifetime of Local Variables

	Chapter 3: Pointers
	Call by Reference
	NULL Pointers
	Const and Pointers
	Restricted Pointers

	Chapter 4: Pointers and Types
	Pointers, Types, and Data Interpretation
	Casting Between Pointers of Different Types
	Void Pointers
	Qualified Types
	Unions
	Struct Pointers
	Character Pointers
	Arbitrary Types

	Void Pointers

	Chapter 5: Arrays
	Arrays, Indices, and Pointer Arithmetic
	Out-of-Bounds Errors
	Pointers to Arrays
	Arrays and Function Arguments
	Multidimensional Arrays

	Chapter 6: Working with Arrays
	Sieve of Eratosthenes
	Array Solution
	Pointer Solution
	Radix Sorting

	Generic Functions on Arrays

	Chapter 7: Strings
	Strings as Sequences of Bytes
	Integers to Strings
	Run-Length Encoding
	Finding Words
	Compacting Words
	Buffer Overflow Errors

	Chapter 8: Substrings Through Ranges
	Basic Operations
	Revisiting Word Iterators
	Replacing Strings

	Chapter 9: Dynamic Memory Management
	Functions for Dynamic Memory Allocation
	malloc()
	calloc()
	realloc()
	aligned_alloc()
	free()

	String Operations
	Dynamic Arrays
	Gapped Buffers

	Chapter 10: Generic Dynamic Arrays
	Void Pointers
	Generic Memory Buffer
	Code Generating Macros
	Inlining Macros
	Heap-Allocated Inlined Array

	Chapter 11: Linked Lists
	Singly Linked Lists
	Adding a Level of Indirection
	Adding a Dummy Element
	Doubly Linked Lists
	Link Operations
	List Operations
	Sorting Doubly Linked Lists
	Selection Sort
	Insertion Sort
	Merge Sort
	Quicksort

	Chapter 12: Search Trees
	Tree Operations
	Contains
	Insert
	Delete
	Free
	Recursive Data Structures and Recursive Functions

	Direct Implementation
	Pass by Reference
	Refactoring
	Iterative Functions

	Explicit Stacks
	Morris Traversal
	Freeing Nodes Without Recursion and Memory Allocation

	Adding a Parent Pointer

	Chapter 13: Function Pointers
	Function Pointers for High-Order Functions
	Callbacks
	Generic String Iterator
	Function Pointers for Abstract Data Structures
	Function Pointers for Polymorphic Data Structures
	Single Inheritance Objects and Classes
	A Hierarchy of Expression Classes

	Generating Functions
	Tagged Pointers

	Chapter 14: Generic Lists and Trees
	Generic Lists
	Casting to Links
	Using Offsets

	Generic Search Trees

	Chapter 15: Reference Counting Garbage Collection
	Immutable Links with Reference Counting
	Adding a Compiler Extension (Not Portable!)

	A Generic Reference Counter
	Search Trees with Reference Counting
	Circular Structures?

	Chapter 16: Allocation Pools
	A Simple Pool for Tree Nodes
	Adding Resizing
	Adding Deallocation
	A Generic Pool

	Chapter 17: Conclusions
	Index

